Technical Report Documentation Page

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.
SWUTC/98/465510-1

4. Title and Subtitle 5. Report Date
Methodology for Traffic Signal Timing in Oversaturated Arterial October 1997
Networks 6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.

Gye-Hyeong Ahn and Randy B. Machemehl
Research Report 465510-1

9. Performing Organization Name and Address 10. Work Unit No. (TRAIS)
Center for Transportation Research
University of Texas at Austin

11. Contract or Grant No.

3208 Red River . Suite 200 0079
Austin, Texas 78705-2650
12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered

Southwest Region University Transportation Center
Texas Transportation Institute

The Texas A&M University System 14. Sponsoring Agency Code
College Station, Texas 77843-3135

15. Supplementary Notes

Supported by a grant from the Office of the Governor of the State of Texas, Energy Office

16. Abstract

A traffic simulation model was developed to provide a methodology for traffic signal timing in
oversaturated urban arterial networks. Two control objectives of traffic signal timing in oversaturated
conditions were taken into consideration. One was to maximize the number of vehicles processed in an
arterial network, which has an oversaturated traffic demand at the entry of the arterial street and moderate
traffic demands at the entry of cross streets. The other was to prevent queue spillback or to minimize the
occurrence of queue spillback if inevitable.

Signal timing offset was the dominant factor affecting system performance; although, link length
was also important. When link length is short, the optimum offset is approximately zero, regardless of the
cycle length. As link length increases beyond the minimum 200 feet tested, for highest efficiency,
downstream intersection greens should begin before upstream intersection greens. This relationship,
opposite to conventional progression greens, moves downstream queues before incoming platoon arrival.

Cross street traffic operations can have significant effects upon arterial performance and system
efficiency. System efficiency rapidly deteriorates when any cross street green becomes too short for the
link length. Therefore, a "practical” minimum green interval for cross streets is necessary to
accommodate upstream cross street through traffic and turning vehicles from the arterial. When the cross
street green is shorter than the minimum, even with the best offset combination, queue spillbacks occur on
the cross streets and system efficiency deteriorates.

17. Key Words 18. Distribution Statement
Input, Output, Queue Length, Queue Spillback, No Restrictions. This document is available to the public
Oversaturated, Undersaturated, Travel Time Offset, through NTIS: , _
. . . National Technical Information Service
Cycle Length, Netyvork Crossing Time, Link 5285 Port Royal Road
Length, Green Split Springfield, Virginia 22161
19. Security Classif.(of this report) 20. Security Classif.(of this page) 21. No. of Pages 22. Price
Unclassified Unclassified 210

Form DOT F 1700.7 8-72) Reproduction of completed page authorized

Acknowledgment

This publication was developed as part of the University Transportation Centers
Program which is funded 50% in oil overcharge funds from the Stripper Well settlement as
provided by the Texas State Energy Conservation Office and approved by the U.S.
Department of Energy. Mention of trade names or commercial products does not

constitute endorsement or recommendation for use.

Disclaimer

The contents of this report reflect the views of the authors who are responsible for
the facts and accuracy of the data presented. This document is disseminated under the
sponsorship of the Department of Transportation, University Transportation Centers
Program, in the interest of information exchange. The U.S. Government assumes no

liability for the contents or use thereof.

Abstract

A traffic simulation model was developed to provide a methodology for traffic signal
timing in oversaturated urban arterial networks. Two control objectives of traffic signal timing in
oversaturated conditions were taken into consideration. One was to maximize the number of
vehicles processed in an arterial network, which has an oversaturated traffic demand at the entry
of the arterial street and moderate traffic demands at the entry of cross streets. The other was to
prevent queue spillback or to minimize the occurrence of queue spillback if inevitable.

Signal timing offset was the dominant factor affecting system performance; although, link
length was also important. When link length is short, the optimum offset is approximately zero,
regardless of the cycle length. As link length increases beyond the minimum 200 feet tested, for
highest efficiency, downstream intersection greens should begin before upstream intersection
greens. This relationship, opposite to conventional progression greens, moves downstream
gueues before incoming platoon arrival.

Cross street traffic operations can have significant effects upon arterial performance and
system efficiency. System efficiency rapidly deteriorates when any cross street green becomes
too short for the link length. Therefore, a "practical” minimum green interval for cross streets is
necessary to accommodate upstream cross street through traffic and turning vehicles from the
arterial. When the cross street green is shorter than the minimum, even with the best offset

combination, queue spillbacks occur on the cross streets and system efficiency deteriorates.

Executive Summary

If the traffic demand attempting to enter a signalized street network greatly exceeds the
network capacity, it is described as oversaturated. Conventional, progression based network
signal fiming tends to encourage formation of longer and longer progressing platoons until they
overfill links (spaces between intersections) producing spill backs into intersections. Grid lock
follows spill back as cross street traffic finds paths blocked by vehicles composing spill backs.
Recognizing the problems of network oversaturation, this study developed a signal timing
methodology specifically designed to prevent platoon or queue spill back, and network gridiock.
In order to properly examine oversaturated network performance and test signal timing concepts,
a new computer simulation model was developed. This model was designed to be an efficient,

authentic tool for oversaturated network evaluation.

The signal timing methodology suggests best signal timing parameters including offsets
and cycle lengths based upon network travel time. More explicitly, the primary measure of
effectiveness was time for a selected number of vehicles to traverse the network. The resulting
timing methodology, opposite to conventional progressive timing, moves downstream queues

. before incoming platoon arrival.

Table of Contents

LIST OF FIQUIES ..ottt st ettt e e e s e sase et e saessaresess st esaneabsssbese e neen vii
ST Of TADIES .ttt ettt et st e e e et e ar s e st s et e teeesteeaenene eaee e X
CHAPTER 1 INTRODUCTION ..ottt eee et sttt ae s e ee e ssesbs et sae e e s e eneeene 1
1.1 STATEMENT OF PROBLEM.... .ottt stereeceieeitr et ee st see s s ene e 1
1.2 RESEARCH OBUJECTIVESottt ettt s st e see e n e e s e 3
1.3 LAYOUT OF THE REPORT ..ot ettt ssnre s s s e ntes e sas e esae e sres s 4
CHAPTER 2 BACKGROUND AND LITERATURE REVIEW. ..ot 5
2.1 INTRODUCTION ..ottt ettt ettt ettt et e et e v n e s v e e s st e s s e asbesree s mr e s esenes seneenoanens 5
2.2 TRAFFIC PERFORMANCE STATES ... oiecieeetrersnereecisre s es e e esse s reeeesessee s e scnem 5
2.3 THEORETICAL APPROACHES..... ..ottt eere e ste st st ests e s s se s st s 6
2.4 PRACTICAL GUIDELINES ...ttt ittt s vetre s e se et e e e e e b e enes 8
2.5 TRAFFIC SIMULATION MODELS ... ettt e et s e 8
2.6 LIMITATIONS AND PROBLEMS OF PREVIOUS STUDIES.......cccconmmriererrceeeceenen, 11
2.7 SUMMOARY .ttt ettt sttt et et e s at e e et e e ke e e e ate e see e rberanaenaesnsens 11
CHAPTER 3 CONCEPTUAL APPROACHES TO PROBLEMccccoiiieiiernnnrrseeveeeeeeensresnae 13
3.1 INTRODUCTION.ttt te e et s s s e tn et e e e s man st e e s s e e e naeesmtans 13
3.2 BASIC DEFINITIONS.....c.ceiiiti et eee et e et e e st e e same s st e et nesevanesssseessansnnenans 13
3.3 METHODS FOR RESTRICTING QUEUE LENGTH......cciioiiecrrrrecrrecer e eeiesee 14
3.4 APPROACHES TO THE PROBLEM.cooiiieeeeercees s cee s e e e e s cva e s 15

3.5 DEPARTURE HEADWAY AND STARTING RESPONSE OF TRAFFIC AT
SIGNALIZED INTERSECTIONS ... eeiereeenter ettt e et ene e e e e e saae s e 17

3.6 GREEN TIME AND AVERAGE TIME BETWEEN SUCCESSIVE VEHICLE
A 1 T S O OO 20
IS0 Y Y O O O RSN 21
CHAPTER 4 DEVELOPING A TRAFFIC SIMULATION MODELooooiiniiirininneee e, 23
4.1 INTRODUCTION ..ottt crrere et e r et e s et e e reeean e et e s s eusa s eeabtaesvaaeesaseeeans rans 23
4.2 THE FUNDAMENTALS OF TRAFFIC SIMULATIONoooiiiiiireiteee e 23
4.2.1 Random NUmMber Generationcc.oocccccierieii e recre e ceree s e e 23
4.2.2 Scanning and Updatingcoocoirereerniiiree i eeere e rere et s e e snn e 24
4.2.3 BOOKKEEDINGT 1 tiiieireteeeeesieee e r ettt e tr e e s e s s enror e s s e s maa e s s mne e s s s nncaaaeeas 24
4.2.4 Assigning Driver/Vehicle CharacteristicS.....covvvcrrreriiereeeeiiiieeciceee e 24
4.2.5 The ENtry PrOCESS ...ttt rmr e s ee e e e s e e b e e 25

v

4.2.8 WaArM-UD TIME ..ottt e et ee e ee e e e eeen e e aae 25

4.3 TRAFFIC SIMULATION MODEL ...coiittitiecie ettt eneee e e e e eeneeem 26
4.3.1 Basic Assumptions and Logic of the Model..........c.covveiieeeeoeeee e, 26

4.3.2 Structure of the Traffic Simulation Modelcoeeoeoveeceeieeeeeeceeeeeeeeeee . 29

4.3.3 Subroutines of the Traffic Simulation Model..........c..ocoieiciiceieieee e, 31

4.3.4 Description of an Example Simulation RUNccevveviieeicieeeeeee e 35

435 INPUL ettt et et s e et s et st e rete et e e e 38

4.3.6 Validation and Calibrationccuueeciieiee e 40

4.4 SUMMARY ..ottt e esee e e st e b s e essbs s b e s sarssssaste st sabeeesseeneseneeesesemenenaens 41
CHAPTER 5 DESIGN AND ANALYSIS OF SIMULATION EXPERIMENTScoovveieeeeee e 43
5.1 INTRODUCTION ..ottt ettt te st e st e te s eer e s sae s st e e eneeeneneeeeeen 43
5.2 FORMULATION OF THE EXPERIMENTAL DESIGNoooveiieei e 43
5.2.1 Objectives of EXPEriMENtS........ccooereriecicceeereececrrrr et e e 43

5.2.2 Factors and RESPONSES ...t 44

5.2.3 Fractional Factorial Designs and Factor-Screening Strategies.......cccccveueene..... 45

5.3 INTRODUCING VARIABILITY TO PARAMETERSoootiieieeeieece e e 47
5.3.1 Departure HEAdWAYcccoecviriiieciiriircieciirectre s st sbe e eaneseaa e e ee e 47

5.3.2 Vehicle Space in the QUEBUEoeiiieeeeeeeeeeceee et 48

5.3.83 VEhICIE SPOET ..t 49

5.4 ONE-WAY ARTERIAL OPERATIONcoirtiiiie it s st .61
5.4.1 EXPeriMENIation. ...ttt e 62

5.4.2 Experimentation with Variabilityccceeeieemoiieeci e 71

5.4.3 Examples of SIMUulation RUNSoccoimeeiieeee e et 74

5.4.4 Offset and Link Lengthcooiie e 79

5.4.5 Green Split and Cycle LENGHooveiiieeeceeeee e e 83

5.4.6 Formulation of RelationShipscieeii e e eeaam 94

5.5 TWO-WAY ARTERIAL OPERATION.......utritirecccieesee ettt s e .97
5.5.1 Experimentation with Two-Ph'ase Operationocoe e e 97

5.5.2 Offset and Link Length (Two-Phase Operation)..........cccecveevirecevierceecieceenenne 102

5.5.3 Experimentation with Three-Phase Operation.............ococveeveeeeeericeieieec 105

5.5.4 Offset and Link Length (Three-Phase Operation)cccceevvveveeerecceeviinieeene 113

5.8 SUMMARY ...ttt ettt st et e et e e e te e e s eee s easeaanenteessesteseeseeseoeneeaamennm 116
CHAPTER 8 CONCLUSIONS ...ttt eere e e e eeeer e esebeese s s s nesenee 119
6.1 SUMMARY AND CONCLUSIONS ...ttt ctirecr ettt o 119
6.2 RESEARCH CONTRIBUTIONS L....coiiiieeeeee ettt e e 122

6.3 RECOMMENDATIONS.......oiiiii ettt e e e s see s s e e - 123

F 2N 0] 7= T QN PO PRRRRURPOPIPON 125
P Y o)1=t gTo 11l = JO USROS 159
S (=] €= (o] T PP SOOI 195

vi

List of Figures

Figure 1.1.
Figure 2.1.
Figure 2.2.
Figure 4.1.
Figure 4.2.
Figure 4.3.
Figure 5.1.
Figure 5.2.
Figure 5.3.

Figure 5.4.

Figure 5.5.
Figure 5.6.
Figure 5.7.
Figure 5.8.

Figure 5.9.

Figure 5.10.
Figure 5.11.
Figure 5.12.
Figure 5.13.
Figure 5.14.
Figure 5.15.
Figure 5.16.

Figure 5.17.

An idealized Signal ProgreSSION.....cui i ircririe it rerreee e eeresrre e s e e er e e e e e e e e e e 2
Traffic Performance States ...ttt 6
Simplified Fiowchart for the TRANSYT-7F Model......cooovvoeeiiiiccinen e 10
Use of warm-up intersections to generate a platooned arrival process 25
Average OVErall SPEEQ......ccccri ittt e e 27
Conceptual flow of the simulation program execution..........ccccoviivcevcirvnererrercrennnee 30
A VENICIE SPACE ... ittt ettt ne et e s e nnen 48
Vehicle SPeed ProfileS ...ttt s e ea e e s e e eeeen 51
Field study site configuration.......ccceiiereeiiie et e 52

Relationship between Type 1 speed and downstream clear space (data points:

Relationship between Type 2 speed and travel distance (data points: 612)........... 61
Arterial configuration for a one-way operation..........ccccccveiriiiiniiin e 62
Network crossing time (sec) [one-way, L =200 ft, C =60 8eC]........coovvveiieecrceennnnn 65
Network crossing time (sec) [one-way, L =200 ft, C =75 seC]....cccvveeeieiininecenns 65
Network crossing time (sec) [one-way, L = 200 ft, C = 90 SeC]...ccccerruvrerecuereennnneen. 66
Network crossing time (sec) [one-way, L = 200 ft, C = 105 S€C]....cccevimrrrecninnennns 66
Network crossing time (sec) [one-way, L = 600 ft, C = 60 S€C].....ccccoeriiicriirnninnnns 69
Network crossing time (sec) [onze-way, L=600ft, C=7586C].cccccmrmreeiicimiicciiannes 69
Network crossing time (sec) [one-way, L =600 i, C =90 seC]......cccevereriirecnnnen, 70
Network crossing time (sec) [one-way, L = 600 ft, C = 105 s€C....cccvvrieccincinnnes 70
Offset 2 vs. network crossing time (one-way, L = 200 fi, offset 3= 0) ...cccevvvreneenn. 80

vii

Figure 5.18.

Figure 5.19.

Figure 5.20.

Figure 5.21.

~ Figure 5.22.

Figure 5.23.

Figure 5.24.

Figure 5.25.

Figure 5.26.

Figure 5.27.

Figure 5.28.

Figure 5.29.

Figure 5.30.

Figure 5.31.

Offset 3 vs. network crossing time (one-way, L = 200 ft, offset 2 =0) 81
Offset 2 vs. network crossing time (one-way, L = 600 ft, offset 3=0)c............. 81
Offset 3 vs. network crossing time (one-way, L = 600 ft, offset 2 = 0) 82

The effect of green split on the network crossing time (L = 200 ft, cross street V

= 500 vphpl, With Dest OffSELS) .cucvreiiiiceeeeee e 86
The effect of green split on the network crossing time (L = 200 ft, cross street V

= 1800 vphpl, With best OffSEIS)......cceerieiieeeeee e 86
The effect of green split on the network crossing time (L = 200 fi, cross street V

= 500 vphpl, with WOrst offSetS)....c.cccvviiiiiie e 87
The effect of green split on the network crossing time (L = 200 ft, cross street V

= 1800 vphpl, With WOrSt OffSE1S)oviiiiei et .87
The effect of cycle length on the network crossing time (L = 200 ft, with best
OTTSEES) ettt ettt ee e 88
The effect of cycle length on the network crossing time (L = 200 ft, with worst

Lo 5T £ OO 89
The éffect of green split on the network crossing time (L. = 600 ft, cross street V

= 500 vphpl, With DESE OfSEIS) ...eeeiiee e 91
The effect of green split on the network crossing time (L = 600 ft, cross street V

= 1800 vphpl, with Dest OffSetS)......cccveiiiieeeceeeee e 91
The effect of green split on the network crossing time (L = 600 ft, cross street V

= 500 vphpl, with worst offSets)......c.ccoriiieieei e 92
The effect of green split on the network crossing time (L = 600 ft, cross street V

= 1800 vphpl, With WOrst OffSEIS) ...t 92
The effect of cycle length on the network crossing time (L = 600 ft, with best

&1 £5T1) SRR P R ORI 93

viil

Figure 5.32.

Figure 5.33.
Figure 5.34.
Figure 5.35.
Figure 5.36.
Figure 5.37.
Figure 5.38.
Figure 5.39.
Figure 5.40.
Figure 5.41.
Figure 5.42.
Figure 5.43.
Figure 5.44.
Figure 5.45.
Figure 5.46.
Figure 5.47.

Figure 5.48.

Figure 5.49.

Figure 5.50.

Figure 5.51.

The effect of cycle length on the network crossing time (L = 600 ft, with worst

o] 1=1=T £ O S U E PP OO PO 93
Relationship between simlation time and OFFD (L = 200 ft).....coccccmimiiiviicenccecin 96
Relationship between simiation time and OFFD (L = 600 ft)......ccccccriiiriineneccean. 97
Arterial two-way operational configurationccceeeei i 98

Offset 2 vs. network crossing time (two-way, two-phase, L = 200 ft, offset 3 = 0) 102
Offset 3 vs. network crossing time (two-way, two-phase, L = 200 ft, offset 2 = 0) 103
Offset 2 vs. network crossing time (two-way, two-phase, L = 600 ft, offset 3 = 0)103
Offset 3 vs. network crossing time (two-way, two-phase, L = 600 ft, offset 2 = 0) 104
Network crossing time (sec) [two-way, three-phase, L = 200 ft, C = 60 sec]....... 108
Network crossing time (sec) [two-way, three-phase, L = 200 ft, C = 75 sec]....... 108
Network crossing time (sec) [two-way, three-phase, L = 200 ft, C = 90 sec]....... 109
Network crossing time (sec) [two-way, three-phase, L = 200 ft, C = 105 sec]..... 109
Network crossing time (sec) [two-way, three-phase, L = 600 ft, C = 60 sec]....... 111
Network crossing time (sec) [two-way, three-phase, L = 600 ft, C = 75 sec]....... 111
Network crossing time (sec) [two-way, three-phase, L = 600 fi, C = 90 sec]....... 112
Network crossing time (sec) [two-way, three-phase, L = 600 ft, C = 105 sec]..... 112
Offset 2 vs. network crossing time (two-way, three-phase, L = 200 ft, offset 3=

0] O OSSP - 113

Offset 3 vs. network crossing time (two-way, three-phase, L = 200 ft, offset 2 =

List of Tables

TABLE 2.1.

TABLE 3.1.

TABLE 4.1.

TABLE 4.2.

TABLE 4.3.

TABLE 4.4.

TABLE 4.5.

TABLE 4.6.

TABLE 4.7.

TABLE 5.1.

TABLE 5.2.

TABLE 5.3.

TABLE 5.4.

TABLE 5.5.

TABLE 5.6.

TABLE 5.7.

TABLE 5.8.

TABLE 5.9.

TABLE 5.10.

TABLE 5.11.

TABLE 5.12.

TRAFFIC SIMULATION MODELS ...ttt et 9

COMPARISON OF VARIOUS RESEARCH RESULTS OF DEPARTURE

HEADWAY S ettt st c e et e st sen e e e e e e an e st 18
DESCRIPTION OF SUBROUTINES.......c.ooiiiiiiterienr ettt 31
EXECUTION STEPS OF THE SUBROUTINE ARRQLAooviiiireeecreeceee 33
EXECUTION STEPS OF THE SUBROUTINE CROSSTccooreiirec e 33
EXECUTION STEPS OF THE SUBROUTINE DEPQLS. ..o 34
EXECUTION STEPS OF THE SUBROUTINES LEFTL AND RIGHTL.......cceecv.. 35
OUTPUT EXAMPLE OF A SIMULATION RUN ... e 37
SIMULATION INPUT DATA ...ttt raae s 38
DESIGN MATRIX BY QUALITATIVE FACTORS......cooi e 45
DESIGN MATRIX BY QUANTITATIVE FACTORS............. eeer et 45
NUMBER OF SIMULATION RUNS (BY A FACTORIAL DESIGN)...c....ccceciineen. 46
REVISED DESIGN MATRIX ...t 46
RESULTS OF FIELD STUDY FOR TYPE 1 AVERAGE OVERALL SPEED.......... 54
RESULTS OF FIELD STUDY FOR TYPE 2 AVERAGE OVERALL SPEED 59
NETWORK CROSSING TIME (SEC) [ONE-WAY OPERATION, L = 200 FT]....... 64
NETWORK CROSSING TIME (SEC) [ONE-WAY OPERATION, L = 600 FT]....... 68

NETWORK CROSSING TIME (SEC) [ONE-WAY OPERATION, WITH
VARIABILITY, L = 200 FT] oot snn s e s .72
NETWORK CROSSING TIME (SEC) [ONE-WAY OPERATION, WITH
VARIABILITY, L = 800 FT] it 73
NETWORK CROSSING TIME (SEC) [FOR 1200 VEHICLES, L =200 FT]........... 75
NUMBER OF VEHICLES SIMULATED ON EACH LANE (FOR 2000 TOTAL

VEHICLES)

TABLE 5.13.

TABLE 5.14.

TABLE 5.15.

TABLE 5.16.

TABLE 5.17.

TABLE 5.18.

TABLE 5.19.

TABLE 5.20.

TABLE 5.21.

TABLE 5.22.

TABLE 5.23.

TABLE 5.24.

TABLE 5.25.

TABLE 5.26.

TABLE 5.27.

TABLE 5.28.

TABLE 5.29.

TABLE 5.30.

NUMBER OF VEHICLES SIMULATED ON EACH ARTERIAL LANE PER CYCLE

(FOR 2000 TOTAL VEHICLES)c.couiiiteitnesieee ettt 76
NETWORK CROSSING TIME (SEC) [FOR 1200 VEHICLES, L = 600 FT]............ 77
NUMBER OF WARM-UP VEHICLESccooctnmiieieceeteeecee ettt e 78
NUMBER OF VEHICLES SIMULATED ON EACH LANE (FIXED OFF3)............. 78

NUMBER OF VEHICLES SIMULATED ON EACH ARTERIAL LANE PER CYCLE79
DESIRABLE OFFSET RANGES (ONE-WAY OPERATION)......coceoieeeeeceece e, 82
UNDESIRABLE OFFSET RANGES (ONE-WAY OPERATION).....cccoovieeeeeeenn. 83

THE EFFECT OF GREEN SPLIT ON THE NETWORK CROSSING TIME (L = 200

NETWORK CROSSING TIME (SEC) [TWO-WAY, TWO-PHASE, L = 200 FT].. 100
NETWORK CROSSING TIME (SEC) [TWO-WAY, TWO-PHASE, L = 600 FT] .. 101
DESIRABLE OFFSET RANGES (TWO-WAY AND TWO-PHASE OPERATION)104
UNDESIRABLE OFFSET RANGES (TWO-WAY AND TWO-PHASE OPERATION)105
NETWORK CROSSING TIME (SEC) [TWO-WAY, THREE-PHASE, L = 200 FT.]107
NETWORK CROSSING TIME (SEC) [TWO-WAY, THREE-PHASE, L = 600 FT]110
DESIRABLE OFFSET RANGES (TWO-WAY ARTERIAL AND THREE-PHASE
SIGNAL OPERATION) ...ttt e et 115
UNDESIRABLE OFFSET RANGES (TWO-WAY ARTERIAL AND THREE-PHASE

SIGNAL OPERATION). ...ttt et 116

xi

CHAPTER 1 INTRODUCTION

1.1 STATEMENT OF PROBLEM

A coordinated arterial signal system consists of two or more traffic signals having a fixed
time relationship to each other. The relationship among arterial signais may be designed to permit
travel without stopping or progression. If the system is operated without coordination, progression
is not likely and increased stops, delay, and fuel consumption may result. Each time platoons
stop, green time is lost and delay is increased. Stops are generally related to delay, but they are
not necessarily related proportionally. Fuel consumption increases with delay and stops. All
signals in the system must be coordinated if progression along the arterial is provided.

The simplest signal coordination scheme would provide progression along a one-way
arterial or in one direction on a two-way arterial. If all vehicles travel at some design speed, v, the
standard scheme for coordination of signals on a one-way arterial is as illustrated in Figure 1.1.
All signals operate on the same cycle time and have the same green interval for the progressed
direction. The offsets are chosen so that the start of green at each intersection occurs at a time d
after that for the adjacent upstream intersection with d = d/v equal to the trip time at the design
speed between the two intersections at spacing d. As shown in Figure 1.1, with this signal
coordination, any vehicle traveling on the arterial at the design speed which passes the first signal
at the start (end) of the green, will pass every other signal at the start (end) of the green.

In a coordinated arterial signal system, platoon flows are common and more closely
represent reality. As the platoon travels through the signal system, it forms a progression (green)
band which is the time in seconds elapsed between the passing of the first and the last possible
vehicle in the platoon moving in accordance with the design speed of a progressive signal

system.

distance

A
’ ’ ’
,’ ,/ ’ ’
’ ’
0.,/ s /G ’ ’
4 ’
’ ’
4 4 ’ 7
4 ’ ’ ’
[d ’ ¢ V2 ¢
/ ’ ’ ’
L /7 R ’ s s
/I ’ / . L ! 7
’ ’ ’
’ ’ ’ ’ ’
’ ’ ’ 7 ’
7 ’ P ’ ’
’ ’ ’ ’ /
’ ’ ’ ’ ’
-——} AN ——— Y AS—
’ 7 ’
’ ’ ’
’ ’ 4
’ ’ 4
Vi / 4 >
time

Figure 1.1: An idealized signal progression

Vehicles turning onto the arterial from a cross street add more complexity to the initial
condition which only considers the arterial. The turning vehicles form a queue at a signal on the
arterial during a red interval. A queue formed in this manner has an effect on the progression
band. The incoming platoon on the arterial would have to stop or reduce speed while the waiting
queue starts and begins moving. A queue clearance time must be used to clear the queue formed
by the cross street traffic. If the average stopped queue for the through traffic is known, then the

queue clearance time can be calculated from

N.

1

| =ty
2 S;/3600 (1.1)

where
Qj = queue clearance time in seconds;

Nj = average number in queue at start of green;

S = saturation flow;

uj = queue start-up time.

To provide progressive movement on the arterial when stopped queues exist, the queue
clearance time Qj is subtracted from the through traffic green time g; o determine the résulting

progressive through green time Gi:

Gi=g -G (12)

As the arterial demand grows, the platoon length eventually exceeds the progression
band and oversaturation occurs. When this heavy demand continues for a long time period the
queue length may extend into the upstream intersection. Not only through traffic on the arterial
but also cross street traffic may be blocked by the extended queue. Queue spillback to upstream
intersections is common in oversaturated arterial networks, especially when intersections are
closely spaced. Queue spillback blocks traffic along the arterials, disrupts progressive
movements, and forms standing queues in the presence of green signal indications. Recurring
gueue spillback is the dominating factor influencing traffic operations in arterial networks. A
primary objective for developing a control policy is to prevent queue spillback.

Many studies have been performed and applied successfully for the control of
undersaturated intersections, but most of them have been ineffective or invalid in oversaturated
conditions. There has been relatively limited research on the area of traffic control for
oversaturated environments, and most of the research has been too theoretical to be applied in a
real system. A number of traffic optimization models such as TRANSYT-7F and PASSER-II can
develop optimal signai timing plans for undersaturated arterials, but none of these is applicable

for oversaturated conditions.

1.2 RESEARCH OBJECTIVES

In general, the control objective of traffic signal timing in undersaturated environments
has been to maximize bandwidth and/or to minimize delay. When demands are extremely high,
however, the control strategy shouid be changed because of the different traffic characteristics of
oversaturated operations. Two control objectives of traffic signal timing in oversaturated
conditions are taken into consideration. One is to maximize the throughput, or the number of
vehicles processed, in the arterial system. The other is to prevent queue spillback or to minimize
the probability of queue spillback if inevitable. Queue spillback should be treated with caution
because it may have serious arterial system effects.

The main objective of this research is to develop a traffic simulation model to provide a
methodology for. traffic signal timing in oversaturated urban arterial networks. This model is
designed o accommodate two-way arterial systems which have at least three intersections with
multi-phase signal operation and one-way cross streets. To simplify the analysis, a basic form of
a coordinated arterial network, such as a one-way streetf, two-phase signals, etc, will be

considered first. The results can be extended for more complicated situations.

1.3 LAYOUT OF THE REPORT

This report consists of six chapters, including this introductory chapter. Chapter 2
provides a literature review of theoretical and practical approaches for developing traffic control
policies in oversaturated environments. Traffic simulation models are also described. Chapter 3
describes the conceptual approach to the problem, including analysis of departure headway and
starting response of traffic at signalized intersections. Chapter 4 describes details of the traffic
simulation model which include the code details, logic and assumptions, an example simulation
run, input details, and calibration and validation of the model. Chapter 5 discusses the
experimental design, simulation experiments, and analysis of experimentation results. This
chapter also describes introducing variability to parameters and average overall speed data
collections. Chapter 6 discusses the summary and conclusions from the study, research

contributions, application of results, and further study needs.

CHAPTER 2 BACKGROUND AND LITERATURE REVIEW

2.1 INTRODUCTION

Traffic control signals for street traffic were first used more than a century ago. It was in
the late 1950s that Webster initiated studies on traffic signal timing. Research on traffic signal
control has since been performed on various problems but it focused on undersaturated traffic
conditions. A limited number of studies have treated the area of traffic control for oversaturated
op’erations. The purpose of this chapter is to give a systematic discussion of the various subjects
related to traffic control during oversaturated traffic conditions.

In this chapter, the following topics will be reviewed and discussed. First, definitions of
traffic performance states will be given. Second, theoretical approaches to developing a control
policy for an oversaturated environment will be discussed, followed by reviews of practical
guidelines for traffic control in oversaturated operations. Finally, traffic simuiation models which

might have application to oversaturated conditions are described.

2.2 TRAFFIC PERFORMANCE STATES

It is not unusual to find the terms congested, saturated, and oversaturated all applied to
the same situation, i.e., where one or more vehicles remain to be served at the end of the green
signal phase. A more exact and nonredundant set of terms are needed to characterize the
various traffic performance conditions that could occur.

Lee, et al. (1975) gave good definitions of traffic performance states as shown in Figure
2.1. Specifically, the definitions have been constructed around a queue formation mechanism
and, as such, they relate to the extent and growth of queues. The following definitions are all
described in terms of one approach to a signal.

The term uncongested operations is characterized as a situation where there is no
significant queue formation. Congested operations represents the entire range of operations
which may be experienced when traffic demand approaches or exceeds, or both, the capacity of
the signal. Since this is not a sufficient definition to describe the problem, the reaim of congested
operations has been divided into two major categories: saturated and oversaturated operations.
Saturated operations has been further subdivided into stable and unstabie ranges. Stable

saturation exists when a queue has formed and is not growing, and delay effects are local. Local

effects in this context implies that traffic performance is only affected at the intersection at which
the queue occurs, and that no other intersection's performance is affected by this queue.
Unstable saturation exists when a queue exists and is growing, and delay effects are still iocal.
Oversaturated operations refers to a situation wherein a queue exists, and it has grown to the

point where the upstream intersection's performance is adversely affected.

TRAFFIC
——
UNCONGESTED CONGESTED
No queue forming I
SATURATED OVERSATURATED
Queue forming and growing
to point where upstream
intersection perfermance
adversely affected
UNSTABLE STABLE
Queue forming and growing; delay Queue forming but not
effects still local (a transient state growing; delay effects local
may be only of short duration)

Figure 2.1: Traffic Performance States

2.3 THEORETICAL APPROACHES

Within the past 30 years a number of studies have been performed to develop a traffic
control policy for oversaturated operations. For pretimed signais, the control of an oversaturated
intersection was first considered by Gazis and Potts (1965) who presented a method for obtaining
traffic signal settings that optimize the movement of traffic during the oversaturation period. In
another paper, Gazis (1964) extended the control policy to two oversaturated linked intersections
with one-way operation. He solved this problem by using the semi-graphical methods employed
in a previous isolated intersection paper.

Longley (1968) proposed a control strategy for real time control of an isolated intersection

and a network of four intersections. His basic control philosophy was based upon the fact that

traffic signals cannot clear queues in conditions of primary congestion, and their function is thus
to maintain the queues to the extent of not blocking a side road in order to delay the onset of
secondary congestion. It was not applied in a real system.

Lee, et al. (1975) developed a control policy for oversaturated intersections. It is a queue-
actuated signal control in which an approach receives green automatically when the queue on
that approach becomes equal to or greater than some predetermined length. A primary objective
of this control policy is to delay or eliminate intersection blockage, which is the outgrowth of
oversaturation.

Michalopoulos and Stephanopoulos (1977) suggested an optimal control policy for
oversaturated intersections. In addition to queue length constraints, travel time between the two
intersections and turning movements were taken into account. In another paper (1981) they
developed a real time control policy minimizing total intersection delays subject to queue length
constraints. Their proposed policy was tested against the pretimed control policy at a high volume
intersection and it was found superior. It was only applicable for isolated intersections at which
traffic arrivals are not affected by upstream signals.

Shibata and Yamamoto (1984) proposed on-line real-time congestion control for isolated
intersections with multi-phase operation. Lieberman (1986) and Rathi (1988) suggested a control
scheme for high traffic density networks which is based on a spillback avoidance approach rather
than the conventional progressive movement approach. One of the two proposed control policies
was designed to limit the spillback of cross street queues by providing optimal offsets and
increased green times along the cross streets. The other was queue management control along
arterials, a form of internal metering, which was designed to manage queue lengths to reduce the
spillback probability. They showed that the optimal relative offsets along arterials are
approximately zero (simultaneous green) in the presence of a moderate queue along arterials
and offsets providing reverse progression for cross streets are optimal or near optimal for streets
with long queues and low discharge rates.

Kim (1990) developed a dynamic optimization model that provides optimal signal control
strategies and a queue management scheme for oversaturated intersections. The dynamic model
was designed to accommodate two-way arterials whose intersections have multi-phase
operations and variation of demand during the control period. The model controls queue length by
the efficient and timely changing of signal timing plans as demand changes and its control

strategies are also designed to minimize the transitional delay caused by frequent changes of the

timing plans. Rouphail (1991) proposed a dynamic and time-dependent approach for analysis of

congested flow at signalized intersections.

2.4 PRACTICAL GUIDELINES

Practical guidelines have been developed to help traffic engineers examine the cause
and seriousness of the traffic congestion problem. Pignataro, et al. (1978) proposed a set of
guidelines developed for the treatment of traffic congestion on street networks. The guidelines
provided both a tutorial and an illustrated reference regarding what techniques to consider and
how to consider them systematically. The various treatments and remedies were classified into
the three categories, minimal-responsive signal control policies, highly responsive signal policies,
and nonsignal control policies, i.e., other treatments in a signalized environment. OECD (1981)
provided policy-makers and traffic engineers with an up-to-date assessment of traffic congestion
management and highlighted the effects of traffic congestion in terms of energy waste,

environmental nuisance, and driver annoyance.

2.5 TRAFFIC SIMULATION MODELS

Traffic simulation can provide traffic engineers with an effective tool for evaluating traffic
system management strategies before implementing such strategies in the field. The simulation
approach is less costly than empirical studies and can provide results in a fraction of the time
needed for field experiments without disrupting traffic operations. Simulation provides a high level
of modeling detail and expands the opportunity for developing new and innovative management
strategies. Traffic simulation provides a wide range of MOE's that cannot be obtained empirically.

Many algorithms and computer simulation models are available today for analyzing
various highway system operating environments. These operating environments contain
signalized intersections, arterial networks, freeway corridors, and rural highways. Both
microscopic and macroscopic computer simulation models have been developed for each of the
operating environmentis stated above. The models can be categorized as shown in Table 2.1
(May, 1990).

Among the traffic simulation models for arterial networks, only TRANSYT-7F and TRAF-
NETSIM have a feature to take into account the effect of queue épillback. The latter is the only
microscopic computer simulation model available for arterial networks and it is described later in

this section.

TABLE 2.1: TRAFFIC SIMULATION MODELS 1)

Operating Microscopic Macroscopic
environment
Signalized TRAF-NETSIM, CALSIG, CAPCAL, CAPSSI, POSIT, SIDRA,
intersections | TEXAS SOAP-84, SIGNAL-85
Arterial TRAF-NETSIM MAXBAND, SPAN, SSTOP, PASSER-II,
networks PASSER-Ill, TRANSYT-7F, SIGOP-IIi
Freeway INTRAS CORQ, FREQ, FRECON2, KRONOS
corridors
Rural TWOPAS, VTI, RURAL

_highways TRARR

1) Some optimization models are included

The Traffic Network Study Too! (TRANSYT) is one of the most widely used models in the
world. It was developed in England with Robertson as the principal author. TRANSYT-7F is the
Federal Highway Administration's version of TRANSYT-7 which is one of nine English versions
(TRANSYT1 through TRANSYT9). TRANSYT-7F has continuously been enhanced in the United
States during the1980s and is the version most widely used.

TRANSYT-7F is a macroscopic and deterministic single-time period simulation and
optimization model. The simulation submodel calculates the performance of an arterial network
for a specified signal timing. The optimization submodel is a hill-climbing optimization process
which determines the near-optimum signal timing plan. A simplified flowchart for the TRANSYT-
7F modei is depicted in Figure 2.2.

A number of enhancements were made to the modeling capabilities of TRANSYT-7F
(Release 6). One of them inciudes an expansion of the optimization objective function to
optionally include excess queue backup (spillback) and/or operating cost. The queue backup
iength is the maximum extension of the queue upstream on the link during one cycle. TRANSYT-
7F reports the maximum back of queue (queue length) and queue capacity values for each link in
the network. By comparing the two values, the user can easily identify where spillover may occur.

Although TRANSYT-7F considers the excess maximum back of queue in the optimization

process where an objective function includes the excess maximum back of queue term, the

simulation still does not explicitly deal with spillover.

Design strategy : Flow patte rn Signal strate gy

, i 1
Simulation) .
submodel ——-’(Simulation out put)

Optimization

Optimization Optimization
submodel out put

Figure 2.2: Simplified Flowchart for the TRANSYT-7F Model

TRAF-NETSIM is the successor to FHWA's well-known NETSIM traffic simulation
program for urban street networks. It is a microscopic and stochastic model based on traffic flow
theory and traffic simulation concepts. TRAF-NETSIM simulates individual vehicles as they
traverse a network of urban streets. TRAF-NETSIM is a powerful tool for analyzing compiex
urban network traffic problems. It has a feature to model saturated conditions and intersection
overflow. Wong, (1990) described how TRAF-NETSIM simulates oversaturated traffic conditions
as follows:

"--- I the receiving lanes are full, a vehicle discharging from the stop line may either wait
or join the queue. if it is a left- or right-turning vehicle, it will always join the queue and

block the intersection. If it is a through vehicle, the program assigns a probability (user

10

specified or default) of joining the queue. (The default probability is 1.00 for the first
through vehicle, 0.81 for the second, 0.69 for the third, and 0.40 for the fourth.) Vehicles
waiting at the stop line will incur delay but will not affect cross-street traffic. Vehicles

blocking the intersection will affect cross-street traffic.”

Even though TRAF-NETSIM does not have the capability of signal-timing optimization, it
is applicable to oversaturated traffic environments where TRANSYT-7F only has limited
capability.

2.6 LIMITATIONS AND PROBLEMS OF PREVIOUS STUDIES

The control of two oversaturated intersections was first considered by Gazis (1964)
where it was assumed that travel time as well as queueing storage between the two intersections
was negligible, and turning movements were ignored. in other words, the two intersections were
treated as one. In the early 1970's some attempts were made to remove these deficiencies, but
there was little improvement. For real time control, some algorithms have been proposed,
(Longley, 1968; Gordon, 1969; Lee et al., 1975) but it should be noted that none has been
applied in a real system due to their complex computational requirements and the extensive
instrumentation required for their implementation.

Considering travel time between the two intersections, queue length constraints and
turning movements, Michalopoulos (1977b) dealt with the problems stated previously, but his
approach was limited to a one way street and simple phase operation. His real time control policy
(1981) was tested and validated but it was only applied to isolated intersections. Kim (1990)
solved some questions by accommodating two-way street intersections with multi-phase
operations and variable demand during the control period in his dynamic model. The stochastic
nature of traffic demand within each time slice, however, was not explicitly considered in the
formulation of the model. It is necessary to validate his model in a real system because artificial

traffic data were used to test the model.

2.7 SUMMARY

For both pretimed and real time controls, theoretical and practical approaches for
developing traffic control policies in oversaturated environments were reviewed. Traffic simulation
models which are applicable to oversaturated conditions, like TRANSYT-7F and TRAF-NETSIM,

were described. Finally, limitations and problems of previous studies, which are partly because of

11

oversimplified assumptions used and partly because of it's lack of applicability in a real system,
were discussed.

12

CHAPTER 3 CONCEPTUAL APPROACHES TO PROBLEM

3.1 INTRODUCTION

This chapter describes basic definitions, queue length management schemes,
approaches to the problem, and conceptual analysis of oversaturated traffic conditions. The
departure headway and average time between successive vehicle starts are important
parameters in the study underlying the traffic simulation model. The literature review and selected

data of departure headway and average time between successive vehicle starts are described.

3.2 BASIC DEFINITIONS

Consider a simplified isolated intersection with one-way single-lane approaches and no
turning movements. At this stage, assume lost-time and start-up delays are not taken into
consideration. Each intersection has conflicting movements that cannot be accommodated
simultaneously. Movements into and out of the intersection can be described in terms of input
and output. Input is defined as the number of vehicles arriving at an intersection approach during
a certain time period and output is defined as the number of vehicles discharged from the stop
line (arrivals and departures of vehicles are assumed to be deterministic). Vehicles discharged
from the stop line are assumed to have uniform headways under oversaturated conditions, and
hence, for that approach, output is proportional to the green interval. For the same reason input is
proportional to the green interval for the corresponding upstream intersection approach.

Oversaturation occurs when input exceeds output. Input and output can be represented by

../ CHT

Outputi,j = @—ﬁ—l—)——
. /C._ T (3.1)

Inputi,j — (gl,_] 1 . j 1)

where
gi,j = green interval for approach i at intersection j

gi,j-1 = green interval for approach i at upstream intersection j-1
Cj = cycle length of intersection j

Cj-1 = cycle length of upstream intersection j-1

T = analysis period

h = headway.

13

Therefore, when (gj,j-1/Gj-1) is greater than (9i,j/Cj), oversaturation occurs and queues
form. Queue length (QL) can be derived in terms of input and output as follows:
Q. = Input — Output
When g; j-1/Cj-1 is greater than gi,j/Cj, then QU is non-zero and increases with time T; otherwise,
Qy_ equals zero:

_ (8i,j-1/Cj1—8; /CHT
‘ h (3.2)

One objective for treating oversaturated conditions is limiting the queue length so as not

QL

to block the upstream intersection, or in other words, to prevent queue spillback. When input
exceeds output for a long time period, the queue length may extend into the upstream
intersection. Queue length must be restricted to the maximum allowable length, which is usually
equal to the queue storage length (Sy). Queue spillback occurs when the queue length is greater
than the queue storage length. One question which arises here, is how to prevent the queue
length from exceeding the queue storage length. From equation (3.2) the possible way of
reducing queue length is to decrease the value of (gj j-1/Cj-1) or to increase the value of (9i,i/Cj)

or to do both.

3.3 METHODS FOR RESTRICTING QUEUE LENGTH

The queue length can be reduced by either increasing the output or decreasing the input.
Each of the procedures is described below.
1. If the output is increased by increasing (9i,j/C) ratio, then either gjj should be

increased or Cj should be decreased. Increasing gi,j leads to an increase in the input on the same

approach at the downstream intersection and a decrease in the green time for the cross street.
Decreasing Cj has the same effects on the cross-street and the downstream intersection. If

progression along the arterial is provided, the common cycle length for the arterial should be
decreased, otherwise only Cj can be decreased.

2. If the input is decreased by decreasing the (9i,-1/Cj-1) ratio, then either gj j-1 should
be decreased or Cj.1 should be increased. Decreasing gi,j-1 leads to a decrease in the input to

the corresponding approach at the downstream intersection and an increase in the green time for
the cross street. Increasing Cj-1 has the same effects on the cross-street and the downstream

intersection. If progression along the arterial is provided, the common cycle length for the arterial
should be increased, otherwise only Cj_1 can be increased.

14

The advantage of the first method is that more vehicles can be accommodated along the
arterial during a given time period. This methad gives priority to the arteriail over the cross streets.
But this option leads to a decrease in the green time on the cross street, and it may deteriorate
cross-street traffic conditions. On the contrary, the second method can provide the cross street
with more green time, which improves cross-street traffic conditions. Thus, this method gives
priority to the cross streets over the arterial and can accommodate fewer vehicles along the
arterial. The second method seems to be better than the first one, based on the following
arguments; (1) In the first method, increasing the output by increasing (gj,j/G) ratio may worsen
the traffic performance of the downstream intersection; (2) The second method improves cross

street traffic conditions.

3.4 APPROACHES TO THE PROBLEM.

In the previous section the different methods that can be us‘ed to limit queue length to the
storage len‘gth on the arterial have been discussed. In this section, some basic concepts used in
developing a strategy for dealing with oversaturated conditions will be discussed.

If a link in a network is saturated, or in other words, Qi = S| on the link, then, assuming
uniform driver behavior, the green interval required to clear the vehicles on this link is given by

Greenshield's queue departure model as follows.

g =d+h(n)
=4+2n (3.3)

where

g = green interval

d = starting delay

h = headway

n = number of vehicles to be cleared

(=QL =S, incase of single-lane)

For example, when the link length is 400 ft and assuming the vehicle length plus average
vehicle spacing equals 20 ft, a maximum of 20 vehicles can be stored in that link. The green
interval required to clear 20 vehicles is 44 seconds by equation (3.3).

1f two adjacent links in a network are saturated, one can consider two extreme cases for
dealing with this condition depending upon the way vehicles are cleared from the upstream

intersection.

15

Case 1. The first vehicle at the upstream intersection stop line is not allowed to moVe
forward until all the vehicles stored in the downstream link are cleared. This method is illustrated
with examples for uniform and nonuniform block spacing.

If the uniform block spacing is 400 ft, then the number of vehicles in each of the adjacent
links is 20. The green interval required to clear each of the links is 44 seconds. Since, in this
case, all vehicles in the downstream link are cleared before the vehicles in the upstream link are
allowed to move, the ofiset for the upstream intersection should be 44 seconds with reference to
the downstream intersection.

If the block spacing is nonuniform, and is equal to 200 ft and 400 ft for the downstream
link and the upstream link respectively, then the number of vehicles on the downstream link is
equal to 10 and that on the upstream link is equal to 20. Hence, the green interval required to
clear the vehicles on the downstream link is 24 seconds. For the same reason mentioned above,
the offset for the upstream intersection should be 24 seconds with reference to the downstream
intersection. Two possible green intervals can be considered for the upstream link, a 24-second
interval and a 44-second interval. If a 24-second interval is used, only 10 out of the 20 vehicles
are cleared from the upstream link. If a 44-second interval is used for the upstream link, the
number of vehicles entering the downstream link exceeds its storage length and may block the
intersection. Here, one can see that the green interval at the upstream intersection is dependent
upon that at the downstream intersection.

From the above example one notes that this method leads to wasted storage space
which results in unnecessary arterial delay.

Case 2. The first vehicle at the stop line of the upstream intersection is allowed to follow
the last vehicle in the downstream link as soon as the last vehicle starts moving forward. If this
method is used for the first example with uniform block spacing, which has already been
described in Case1, the offset for the upstream intersection should be iess than 44 seconds with
- reference to the downstream intersection. How much less than 44 seconds depends upon the
time the last vehicle, at the downstream, starts moving. This method yields a smaller offset, better
storage space utilization, and hence lesser delays along the arterial in comparison with Case1.
More about this method will be discussed later in Section 3.5.

From the above two cases, one can observe that the storage space limitation governs the
green interval, and the method used to clear the queues governs the offsets, which in turn affects
performance measures such as delay and average travel time.

Consider right turns during red signal indications that usually affect intersection outputs.
Right-turn t'raffic from the cross street onto the arterial during the cross street red interval leads to

16

increased input to the arterial. Right-turn traffic from the arterial into the cross street during the
red arterial interval yields an arterial output increase. For oversaturated conditions in which the
link storage space is constantly filled, potential right turners have no space into which they can
move. Therefore, the only option for right turners is to move into the intersection waiting for a link
storage space. Therefore, right-turn traffic on red intervals in this type of oversaturated condition

can be ignored.

Conceptual analysis of oversaturated traffic conditions

On an intersection approach, if input exceeds output, a queue forms and grows. If input
continues to exceed output, the entire link, which is the approach storage area, will be filled and
one more vehicle joins the queue and blocks the intersection. This is called queue spillback and
occurs in oversaturated traffic conditions. This queue spillback will block the same direction traffic
flow until it is cleared. If it remains after its own green signal duration, it also will block cross street
traffic flow.

Oversaturated arterial networks composed mainly of passenger cars, have several
common traffic flow characteristics. First, drivers do not have enough freedom to move as they
wish. Thus, they have very limited opportunities to pass or change lanes. Second, variance of
parameters (departure headway and average overall speed, etc.) are relatively small. For
example, very long départure headways or high vehicle speeds are very unlikely.

Queue spillback causing long delay (especially, when it is not cieared before its own
green signal duration ends) is more problematic, because it has an adverse effect not only on
upstream intersections but also cross streets. As discussed before, one control objective of traffic
signal timing in oversaturated conditions is to prevent queue spillback or to minimize the
probability of queue spillback in the arterial network if inevitable. Therefore, a queue spillback

avoidance approach should be a key strategy in oversaturated traffic conditions.

3.5 DEPARTURE HEADWAY AND STARTING RESPONSE OF TRAFFIC AT SIGNALIZED
INTERSECTIONS

The departure headway is the time between successive vehicles departing a stop line of
a signalized intersection after the signal turns green. The values of several important parameters
regarding signalized intersection operation - such as saturation flow rate, starting delay, and lost
time - are often derivatives of departure headway measurements. Many researches and

investigations on the departure headway have been performed.

17

Greenshields et al. (1947) studied traffic flow behavior at intersections in New York City
and New Haven, Connecticut. It was one of the earliest efforts to quantify vehicle flow
characteristics on approaches to intersections. According to their data, an average of 3.8 seconds
was necessary for a queue of 6 or more stopped vehicles to begin moving after the traffic signal
turned green. The successive mean headways for the following vehicles entering an intersection

from a stopped queue are shown in Table 3.1.

TABLE 3.1: COMPARISON OF VARIOUS RESEARCH RESULTS OF DEPARTURE

HEADWAYS
n Greenshields Gerlough & Carstens Wilkinson &
('47) Wagner ('67) ('71) King ('76)
1 3.8 3.85 2.64 2.61
2 6.9 6.66 5.13 5.61
3 9.6 9.17 7.62 8.13
4 12.0 11.64 9.91 10.50
5 14.2 14.01 12.20 12.71
6 16.3 16.37 14.49 14.85
7 18.4 18.77 16.78 16.99
8 20.5 21.08 19.07 19.13
9 22.6 23.32 21.36 21.27
10 24.7 25.66 23.65 23.41
Screen line | intersection n/a stop line stop line (front or
line (front of car) (front wheel) rear wheel)
Relationship 3.7+2.1n 2.4442.3n 0.75+2.29n 2.01+2.14n
(n>5) (n=5) (n=3) (n=6)
n Lee & Chen Lu ('84) Moussavi & Efstathiadis
('86) 4)) (left-turn) Tarawneh ('90) ('92)
1 3.80 2.43 2.90 2.04
2 6.36 5.05 4.94 4.50
3 8.71 7.15 7.04 6.62
4 10.93 9.24 9.08 8.62
5 13.09 11.04 10.95 10.55
6 15.12 12.84 12.86 12.45
7 17.09 14.64 14.61 14.30
8 19.03 16.44 16.36 16.12
9 20.97 18.24 - 18.11 17.91
10 22.75 20.04 19.86 19.70
Screen line | stop line intersection line n/a front of first car
(rear bumper) (front of car) {front of car)
Relationship o09.200n 1) 2.04+1.8n 1.34+1.82n
(n=>2) (n>5) (n=4)

1) Regression analysis was applied to get a relationship. (R = 0.999)

George and Heroy (1966) conducted an interesting study to determine the time required
for each vehicle in a line of stopped vehicles to begin its forward motion after the beginning of the
green signal at a signalized intersection. In this study, the time lag from the beginning of a green

period to the start of forward motion of vehicles for each position from an intersection stop line

18

was measured. The relationship between vehicle position and average time of starting from a
stopped position approximated a straight line. The average time between successive vehicie
starts was approximately 1.4 seconds.

Gerlough and Wagner (1967) completed a study on queue discharging behavior using
field data collected from the Los Angeles metropolitan area. Departure headways collected from
the field are also shown in Table 3.1.

Carstens (1971) studied starting delays and headways with manual counts, stop
watches, and time-lapse photographs in Ames, lowa. King and Wilkinson (1976) used a manual
input method to study the relative effectiveness of various signal configurations and lens sizes in
dissipating queues in Brookline, Massachusetts; San Francisco; Sacramento; and Huntington,
New York. Lee and Chen (1986) measured departure headways by using video camera
equipment in a small city, Lawrence, Kansas. Lu (1984) used a time recorder and stop watches to
collect left-turn departure headways at an unprotected and a protected signalized intersection in
Austin, Texas.

Moussavi and Tarawneh (1990) collected departure headways by using a laptop
microcomputer in six cities in the state of Nebraska. According to their data analysis, the
departure headways for different queue positions in large cities are smaller than those for smaller
cities. The results of the Chi-Square test indicated that the departure headways for each queue
position follow the normal distribution.

One of the most recent studies on departure headways was made by Efstathiadis (1992).
He measured departure headways using a storage stop watch device for a number of signalized
intersection approaches in Austin, Texas. The results of a normality test showed that departure
headways were, in most cases, normally distributed. The mean value of headway generally
decreased from front to rear of the queue. All the average headway data obtained from the above
studies are summarized in Table 3.1.

Table 3.1 shows some interesting trends in the average departure headway as time has
progressed since the late 1940s. The table shows that the average departure headway increased
until the early 1970’s, and thereafter, it indicates a steady decrease in the average departure
headway until now. This might be a direct result of a decrease in average car size, improved
vehicle design, improved traffic flow control strategies, an improvement in the intersection
geometry, and improved pavements. Furthermore, more aggressive driver behavior and the
advent of automatic transmissions might have contributed to more rapid response to the green

signal by today's driver. For example, the recent studies, by Efstathiadis (1992), Moussavi and

19

Tarawneh (1990), and Lu (1984), showed the similar results that departure headways measured
in all their studies were lower than in almost all other earlier studies.

Most past studies were based on limited data points and date back 10 to over 40 years.
Since traffic and vehicle characteristics have changed considerably over time, for current
applications, resuits of those studies might not be appropriate.

For reasons discussed above, average departure headways for different queue positions
which are presented in Efstathiadis' study were used for this study. His study is the most recent
one and the values are assumed to represent current traffic, vehicle, and driver characteristics.

Starting delay is closely related to the selection of the screen line where departure
headways are measured. As the distance between the screen line and the first vehicle in the

queue increases, starting delay increases.

3.6 GREEN TIME AND AVERAGE TIME BETWEEN SUCCESSIVE VEHICLE STARTS
GREEN TIME

Efstathiadis (1992) developed an equation which relates the time required for a number
of stopped vehicles at a signalized intersection to pass the reference line with start-up lost time,

L, and time headway, H, between vehicles. The equation is as follows:

G=L+H=*n fornza
=134+182*n fornz=4 (3.4)
where
G = time needed for n vehicles (front end) in a single-line stopped queue to cross a
designated reference line at a signalized intersection after the signal indication
changes to green
L = start-up lost time
H = average time headway between successive vehicles
n = number of vehicles that cross the reference line.
a = number of vehicles that contribute to the start-up lost time
The overall average start-up lost time of 1.34 seconds can be attributed to the first four
vehicles and the average headway, H, after the fourth vehicle was 1.82 seconds. Equation (3.4)

was used to calculate the green time required to clear queued vehicles.

20

Average time between successive vehicle starts

According to the George and Heroy study (1966), the average time between successive
vehicle starts was approximately 1.4 seconds. However, a decrease in average car size, more
aggressive driver behavior, and the advent of automatic transmissions have contributed to more
rapid response in starting from a stopped position. Therefore, the average time between
successive vehicle starts is modified to 1.1 seconds to represent current traffic conditions,
appropriately. This value is used to calculate the time a vehicle stored in a queue starts moving

forward after the beginning of the green signal.

3.7 SUMMARY

Basic terminology such as input, output, queue length, and queue spillback has been
defined in this chapter. Methods for restricting queue length, approaches to the problem, and
conceptual analysis of oversaturated conditions were discussed. As important parameters
underlying the fraffic simulation model, the departure headway and average time between
successive vehicle starts were described. The next chapter will describe the development of the

traffic simulation model for traffic signal timing in oversaturated conditions.

21

22

CHAPTER 4 DEVELOPING A TRAFFIC SIMULATION MODEL

4.1 INTRODUCTION

As discussed in Chapter 2, the only traffic simulation models for arterial networks, which
have a feature to take into account the effect of queue spillback are TRANSYT-7F and TRAF-
NETSIM. However, since the former does not explicitly deal with gueue spillback and the latter
lacks the capability of signal timing optimization, both models are not suitable for use in this
study.

An analytical tool is needed to analyze and predict arterial network traffic performance.
The model should be designed to study an oversaturated time period over an arterial including, at
least, three intersections. Because of the sophisticated nature of the problem, that will mainly deal
with queue spillback in oversaturated traffic conditions, a stochastic microscopic-type model is
envisioned.

A number of analytical techniques are expected to be required for this problem, including
capacity analysis, traffic flow models, and queueing analysis. The use of a computer simuiation
model is best to integrate these various techniques into one analytical framework.

This chapter discusses fundamentals of traffic simulation and how these are implemented
in the traffic simulation model. The details of the simulation model are described in the following
order: basic assumptions and logic of the model, the structure of the traffic simulation model, a
brief description of each subroutine and program details of several important subroutines, a
description of an example simulation run, the simulation input data, and the calibration and

validation of the model.

4.2 THE FUNDAMENTALS OF TRAFFIC SIMULATION

This section discusses some fundamentals of traffic simulation and how they are

implemented in this model.

4.2.1 Random Number Generation

In this traffic simulation model, a random number generating routine was applied for
introducing “real world" variability to parameters, which will be discussed in the next chapter. To
overcome the disadvantage of system-supplied random number generators, an improved random

number generator from Press et al. (1986) was used. The improved random number generator

23

has an indefinite period (for all practical purposes) and should have no sensibie sequential

correlations.

4.2.2 Scanning and Updating

A digital computer cannot examine simulated vehicles simultaneously or continuously. It
is, thus, necessary to define a scanning procedure by which each vehicle unit is examined. The
two basic procedures that might be adopted are referred to as time-based and event-based
scanning. In a time-based system, the simulated traffic is scanned and updated after each
predetermined increment of simulated time (typically 1 second). An event-based system scans to
determine the time of the next event, and this becomes the time increment for the simulation
updating. Due to the nature of oversaturated traffic operations, the event-based scanning
procedure was chosen as more efficient but was supplemented, for some sub-procedures, by

time-based scanning.

4.2.3 Bookkeeping

There are two different systems for the structuring of storage arrays in traffic simulation
bookkeeping. One system divides each traffic lane into a finite number of spaces, and allocates
computational array elements to each space. The position of a vehicle is then represented by the
location within the array, and position updating consists of transferring the information indicating
each vehicle to the appropriate array elements. The other system uses vehicle-based arrays,
which was chosen for this simulation model. Vehicle position, as well as other vehicle specific
information, is stored in array elements permanently allocated to each vehicle. There are various
options within each of these systems, and some features may be combined. As the scanning and
information retrieval procedures will depend on the storage method, the bookkeeping system

must be considered as an integral simulation logic component.

4.2.4 Assigning Driver/Vehicle Characteristics

Each simulated driver and vehicle unit must be assigned a number of parameters which
will be used to determine appropriate responses and behavior within the simulation. The
employed methlod of assigning characteristics for this simulation model! is to regard all such
parameters as being random, and to assign unit characteristics randomly chosen from specified
probability distributions describing parameters such as start-up lost time and time spacing of

vehicles departing from a signalized intersection.

24

4.2.5 The Entry Process

A stream of simulated vehicles must be generated with an appropriate arrival process at
each end of the simulated arterial section. Warm-up intersections are used for generating a
platooned arrival process at the stream entries to a simulated arterial. As shown in Figure 4.1,
hypothetical intersections, referred to as ‘warm-up' intersections, were added at each end of the
simulated arterial. Vehicles are generated according to a uniform arrival process at the entry to

the warm-up intersection. Infinite storage spaces upstream of each warm-up intersection are

assumed.
Warm-up Warm-up
intersection Simulated Arterial intersection
-y - -

=

Uniform Platooned Platooned Uniform
arrivals arrivals arrivals arrivals

Figure 4.1: Use of warm-up intersections to generate a platooned arrival process

4.2.6 Warm-Up Time

Since the simulation model assumes that the initial state of an arterial system is empty, a
certain amount of time is required to fill the arterial system after simulation run start. Considering
a three intersection saturated arterial network, movements into and out of intersections, can be
described in terms of input and output. When input is equal to output, no queue spillback occurs.
Turning movements into an arterial occuring during the arterial red time can easily upset this
relationship and therefore, are key factors that cause queue spillback.

A "leftover” vehicle is defined as one that cannot move forward into the downstream
intersection during the first green interval after its initial stop. The number of "leftover" vehicles in
a link is a function of the number of turn-in vehicles. Queue spillback occurs when the number of
vehicles, which include "leftover” vehicles and arriving vehicles, exceed the link capacity.
Assuming no variability in parameters, this kind of queue spillback will occur continuously
throughout the simulation after the first queue spillback. Therefore, the warm-up period I can be
chosen by

I = (Dist/ X) / min (nlt, nrt) (4.1)

25

where
I = warm-up period (number of cycles)

Dist = link length (ft)

X = vehicle space headway (ft/veh)

nit = number of (protected) left-turn vehicles per cycle

nrt = number of right-turn vehicles per cycle

This warm-up period is approximately equal to the time required for a link to be filled with
"leftover" vehicles.

Example: Dist = 600 ft. X = 20 ft/veh

nlt = 6 veh/cyclenrt = 3 veh/cycle
[= (600/20) / min (6, 3) = 10 signal cycles

4.3 TRAFFIC SIMULATION MODEL

This section describes in detail how the ftraffic simulation model operates. Basic
assumptions and logic used in processing vehicles are discussed. Most subroutines are briefly
described and program details of several important subroutines are presented. A detailed

description of an example simulation run is provided.

4.3.1 Basic Assumptions and Logic of the Model

This subsection discusses basic assumptions and logic used in processing vehicles from
their point of arrival through the intersection. Listed below are basic assumptions and logic not
previously discussed in this study:

» This model is designed specifically for oversaturated arteriai traffic conditions. Traffic
demand at the entry of the arterial street is greater than the capacity. The demand is given in
terms of arriving headways at the first (warm-up) intersection. The downstream intersection
traffic demand is controlled by the upstream intersection green time. The default value for the
arterial arriving headway is 2.0 seconds per vehicle, that is equivalent to 1800 vehicles per
hour per lane (vphpl). If the saturation flow is 1800 vphpl, the entry of the arterial street will
always be oversaturated uniess it has all available green time.

» Within the cases specifically simulated, traffic demand at the entry of cross streets is
selected so that the degree of cross street saturation can be determined by the green ratio.
The default value for the cross street arriving headway is 7.2 seconds per vehicle, that is

equivalent to 500 vphpl. Given this volume, if cross streets have less than 27.7 % (=

26

500/1800) available green time, the entries of cross streets will be oversaturated, otherwise,
they will be undersaturated.

* To simulate vehicle movements in the traffic simulation model, appropriate acceleration and
deceleration rates are necessary. If the appropriate empirical data for those rates are
available, to apply the data to each vehicle would be the best way of simulating vehicle
movements. However, since such empirical data are usually unavailable, uniform or iinear
acceleration and deceleration rates are often assumed. As shown in Figure 4.2, if the area A
(shaded) is equal to the area below line B, distances traveled by a vehicle accelerating,
cruising (if necessary), and decelerating for time t and traveling at the average overall speed
for time t will be equivalent. Thus, applying appropriate average overall speed obtained from
the field may produce more accurate results in calculating the travel time than applying
assumed uniform or linear acceleration and deceleration rates to each vehicle. Furthermore,
applying appropriate average overall speed enables the model to simulate vehicle
movements faster, which is important for a network simulation model. Therefore, the average
overall speed concept was used in this study instead of applying to each vehicle uniform or

linear acceleration and deceleration rates.

A cruising speed

1
raverage

:overall speed

speed
(ft/sec)

time (sec)

a) case 1: vehicles reach a cruising speed before decelerating

cruising speed

speed
(ft/sec)

j average
1 overall speed
1

time (sec) t

b) case 2: vehicles never reach a cruising speed before decelerating

Figure 4.2: Average overall speed

27

* Two of the most important events to be tracked through the simulation process are the
arrival and departure times of each vehicle simulated. Each vehicle's movement in the model
is determined mainly by departure headway and average overall speed. The departure time is
largely determined by departure headway. Each vehicle moves at its own average overall
speed in the link. The arrival time is largely determined by departure headway and average
overall speed. Therefore, for this simulation model, data for departure headway and average
overall speeds are essential.
* Since event-based scanning is adopted, it is not necessary to identify what happens
between the two consecutive events. Once a vehicle departs the intersection stop line
(reference line), the next event to be identified is its arrival time in the downstream link. Thus,
for example, it is not necessary to identify acceleration and deceleration rates or cruising
speed of the vehicie at a point between the departure and arrival times as long as average
overall speed is applied correctly. A vehicle can depart the reference line and move at its own
average overall speed during the green interval whenever the downstream clear space is
available. If a queue spiliback occurs in the downstream link, upstream vehicles must wait for
downstream clear space(s) before advancing.
* When a vehicle departs the reference line, an average overall speed based on the
downstream clear space is assigned to it. Then, it moves into the downstream intersection at
the average overall speed. Therefore, each vehicle simulated has its own space and time
headway relationships with the leading and following vehicles when they are moving, which
indicates that a platoon dispersion model is employed in an implicit way. Since event-based
scanning is adopted, however, it is not necessary to identify this phenomenon as an event.

-» Overtaking (passing) is not allowed due to oversaturated conditions in which no space is
available.
» Lane changing is not allowed in the model due to oversaturated conditions.
= Right-turn (left-turn) vehicles enter the rightmost (leftmost) iane.
» There are no bus stops or pedestrians.
* There are passenger vehicles only, that is, no heavy vehicles.
* A yellow clearance interval is included in each green intervai.
* There are no grades.

The foliowing logic and assumptions are previously explained and summarized here:

» Discharge from the head of a queue is based on results of Efstathiadis' study (1992).
» Based on the George and Heroy study (1966), average times of successive vehicle starts

are determined as follows;

28

sut(n)=1.1*n forn=4 4.2)

where

sut (n) = time required for the nth vehicle in the queue to start moving after the signal

turns green

n = number of vehicles in the queue.
* Given a green signal and a filled downstream link, one storage space in the intersection is
always provided to the advancing traffic stream. A queue spillback occurs when upstream
vehicles with a green signal, move into the intersection joining the stopped queue. If a queue
spillback occurs, the vehicle caught in an intersection blocks the intersection until it is cleared.
Queue spillback is decribed in detail in the next chapter.
* A simulation begins after the warm-up time, which is set to a specified number of traffic
signali cycles.
» The duration of a simulation job is specified by a number of vehicles to be passed through

the simulated network.

4.3.2 Structure of the Traffic Simulation Model

The traffic simulation model consists of a MAIN routine and many subroutines. The MAIN
routine includes three major subroutines; RIGHTL, LEFTL, and CROSST. Two subroutines,
RIGHTL and LEFTL, are called to process the arterial traffic. For two-way operation, they are
used twice in the MAIN routine. For each cross street the subroutine named CROSST is called to
process cross street traffic. The conceptual flow of the simulation program execution is shown in
Figure 4.3.

The MAIN program reads the simulation input data which includes the arterial geometry,
traffic signal timing, traffic demand, and simulation period. With the initialization of the array and
the necessary calculation to transform the input data, the simulation begins at time zero. At the
start, the arterial system is assumed to have empty links with no vehicles. The RIGHTL
subroutine is called to generate vehicles and process them in the right arterial lane. When any
green of the arterial ends in the RIGHTL subroutine, the LEFTL subroutine is called to generate
and process vehicles in the left arterial lane.

The first CROSST subroutine is called to generate and process vehicles in each lane of
the first of three cross streets after arterial green ends during LEFTL subroutine execution. In the
CROSST subroutine vehicles in the left lane are processed first followed by right lane vehicles.
For the second and third cross streets, the second and third CROSST subroutines are executed

in the same way as the first. The MAIN routine is executed until the specified number of vehicles

29

is simulated (including arterial and cross street vehicles after the warm-up time ends). The warm-

up time is set to a specified number of traffic signal cycles.

N
RGHTL & LEFTL
4 " MAIN (Oneway) N - processes vehicles (ARRQLA)
from the first (ARRNT)
Initialization intersection to the
N=0 / last intersection in - calculates
B CALLRIGHTL the right (left) lane arrival time
CALL LEFTL of the arterial street ateach
CALL CROSST(1) - CALLARRQLA int ersect ion
CALL CROSST(2) - GALL DEPQLS ™ DEPOLS
CALL QROSST(3) [N\ -
N= N + AN \q((DEPART)
n N over specified QROSST - calculates
y value? - processes vehicles departure
Output in each lane of the timeat each
Stop cross street int ersection
_ J - CALL ARRQLA _ J
- CALL DERPQLS
_/

Figure 4.3: Conceptual flow of the simulation program execution

Throughout the simulation, intersection arrivals and departures are major events. An
arrival time at an intersection is defined differently depending on queue presence. If there is no
queue in the link, the time a vehicle reaches the intersection stop line (reference line) is the arrival
time, otherwise it is the time of queue joining. A departure time is the time a vehicle passes the
intersection stop line. If there is no queue in the link, the intersection arrival and departure times
are equal.

The three major vehicle processing subroutines call the arrival and departure subroutines
at each intersection. The arrival subroutines (ARRQLA and ARRNT) calculate the arrival time of
each simulated vehicle at each intersection. ARRQLA deals with the case of vehicles turning on
to the arterial from cross streets. In the absence of cross street vehicles turning on to the arterial,
the subroutine named ARRNT is used. The departure subroutines (DEPQLS and DEPART)
calculate departure times of each vehicle at each intersection. DEPQLS includes the option to
delay vehicle departure when a queue spillback occurs in the downstream link. When the

downstream link is full, only one vehicle from the upstream intersection stop line is allowed to join

30

the queued vehicles in the downstream link, creating a queue spillback. When this occurs the |
following vehicles must wait until the vehicle caught in the intersection starts moving forward. [f

this queue spillback is not cleared within the current green, it will block cross street movements

until it is cleared. The departure headway, which is used for departure times of queued vehicles,

is based on the Efstathiadis' study (1992). ~

4.3.3 Subroutines of the Traffic Simulation Model

The program was envisioned as including a main executive program calling other
subroutines, which would do the actual work. A brief description of each subroutine is listed in
Table 4.1. As each subroutine completes its task, control returns to the main program, which in
turn calls the next subroutine.

TABLE 4.1: DESCRIPTION OF SUBROUTINES

SUBROUTINE DESCRIPTION

NAME

ARRNT calculates arrival time of a vehicle when there are no turn-in
movements.

ARRQLA calculates arrival time of a vehicle when there are turn-in movements.

CNNQS counts numbers of queue spillbacks.

CROSST processes vehicles in the cross street.

CSPEED calculates average overall speed

CTIME calculates cross street traffic signal timing.

DEPART calculates vehicle departure times.

DEPQLS caiculates vehicle departure times and includes an option that delays
departure when a queue spillback occurs.

DPHDWY stores departure headway and the time queued vehicles start moving
forward when the signal turns green.

FINDEV calculates when the (m-(iveh1+1))th vehicle in the downstream link
starts moving forward (iveh1 = link capacity in number of vehicles).

INPUT stores data in appropriate format and locations for later use by other
subroutines.

INIT , INIT1, and INIT2 initialize all computational arrays.

Table 4.1 continued on next page

31

Table 4.1 continued from previous page

SUBROUTINE DESCRIPTION

NAME

LEFTL processes vehicles in the left arterial lane.

NEXTTI finds the next available turn-in vehicle.

NORDEV generates normal random deviates with a mean m and a standard
deviation s.

NORMAL generates normally distributed deviates with zero mean and unit
variance.

NOQUE counts the number of queued vehicles.

NOVSIM counts the number of vehicles simulated.

NOVWUP counts the number of warm-up vehicles.

PIKSRT sorts n values in ascending order.

PRN prints arrival and departure times at each intersection.

PRNQS calculates and prints number of queue spilibacks caused by through
traffic.

PRNQST calculates and prints number of queue spilibacks caused by turning-in
vehicles.

PRNOP1 prints summarized outputs (number of queue spillbacks per cycle).

PRNOP2 prints summarized outputs (number of vehicles simulated).

BANNUM generates uniform random deviates between 0.0 and 1.0.

RANSPD generates random average overall speeds.

RIGHTL processes vehicles in the right arterial lane.

SIGADJ adjusts traffic signal timing obtained by SIGNAL.

SIGNAL calculates arterial traffic signal timing.

UPDATE updates signal timing.

Execution steps of several major subroutines, which perform the important program work,

are summarized in Tables 4.2 - 4.5.

32

TABLE 4.2: EXECUTION STEPS OF THE SUBROUTINE ARRQLA

Steps Description

Step 1 Count the number of queued vehicles in the downstream link and calculate
the time the last vehicle in the queue starts moving.

Step 2 Calculate or generate (in case with variability) the average overall speed
and the distance to be traveled based on the results of step 1.

Step 3 Calculate arrival time of the mth vehicle (arr(m)) based on the departure
time of the vehicle from the upstream intersection (depp(m)), the average
overall speed (speed), and distance to be traveled (dist):

arr(m) = depp(m) + dist / speed

Step 4 During the cross street green, calculate arrival time of the nth turn-in vehicle
from cross street (arrr(n)) by applying step 3.

Step 5 if arr(m-1) < arrr(n) < arr(m), then:

arr(m+1) = arr(m)
arr(m) = arrr(n)

Step 6 If a queue spillback occurs in the downstream link before a vehicle turns
onto the arterial from the cross street, then delay processing the turn-in
movements until the vehicle caught in the intersection starts moving.

TABLE 4.3: EXECUTION STEPS OF THE SUBROUTINE CROSST

Steps Description

Step 1 If the left lane routine is not called (if kit = 0), then go to step 10.

Step 2 Update the number of vehicles simulated.

Step 3 If the second intersection green is updated, then go to step 7.

Step 4 Generate vehicles at the firstiwarm-up intersection with the specified arrival
rate.

Step 5 Calculate the departure time from the first intersection.

Step 6 Calculate the arrival and departure times at the second intersection. if dep2
exceeds the end of green, then update signal timing and | go to step 10.

Step 7 Calculate the arrival and departure times at the third intersection.

Table 4.3 continued on next page

33

Table 4.3 continued from previous page

Steps Description

Step 8 Print the arrival and departure times at each intersection.

Step 9 Go to step 2.

Step 10 | Ii the right lane routine is not called (if krt = 0), then exit.

Step 11 | Update the number of vehicles simulated.

Step 12 | If the second intersection green is updated, then go to step 16.

Step 13 | Generate vehicles at the first/warm-up intersection with the specified arrival
rate.

Step 14 | Calculate the departure time from the first intersection.

Step 15 | Calculate the arrival and departure times at the second intersection. If dep2
exceeds the end of green, then update signal timing and exit.

Step 16 | Calculate the arrival and departure times at the third intersection.

Step 17 | Print the arrival and departure times at each intersection.

Step 18 | Go to step 11.

TABLE 4.4: EXECUTION STEPS OF THE SUBROUTINE DEPQLS

Steps Description

Step 1 Update k (kth vehicle in the queue when the signal turns green).

Step 2 Count the number of queued vehicles in the downstream fink .

Step 3 Calculate departure time (dep) based on the k and departure headway (2)
and beginning of the green (ig):

dep(m) = z(k) + ig

Step 4 If a queue spillback occurs in the downstream link, then delay the departure
of the first vehicle in the upstream link until the vehicle caught in the
intersection starts moving forward. Calculate the departure delay and add it
to the departure times of the following vehicles until the green ends:

dep(m) = z(k) + ig + delay

Step5 | If dep(m) exceeds the end of green, then update signal timing and delay
departures of vehicles until the next available green begins.

Siep 6 If there is no queue in the downstream link, then dep{m) = arr(m).

34

TABLE 4.5: EXECUTION STEPS OF THE SUBROUTINES LEFTL AND RIGHTL

Steps Description

Step 1 Examine which green interval is updated.
If the first intersection green is updated, then go to step 5.
If the second intersection green is updated, then go to step 6.

If the third intersection green is updated, then go to step 7.

Step 2 Update the number of vehicles simulated.

Step 3 Generate vehicles at the first/warm-up intersection with the specified arrival

rate.

Step 4 Calculate the departure time from the first intersection (dep1). If dep1
exceeds the end of green, then update the first intersection signal timing

and exit.

Step 5 Calculate the arrival and departure times (arr2 and dep2) at the second
intersection. If dep2 exceeds the end of green, then update the second

intersection signal timing and exit.

Step 6 Calculate the arrival and departure times (arr3 and dep3) at the third
intersection. If dep3 exceeds the end of green, then update the third

intersection signal timing and exit.

Step 7 Print the arrival and departure times at each intersection.

Step 8 Go to step 1.

4.3.4 Description of an Example Simulation Run

For a better understanding of the model, a detailed description of an example simulation
run is provided. The example selected includes a one-way two-lane arterial street and three one-
way two-lane cross streets with a short link length (200 feet) and a short cycle length (60
seconds). The arterial configuration is shown in Figure 5.8. For offsets 2 and 3, values of zero
and 45 seconds are used and a common 60 second cycle length with 40 and 20 seconds arterial
and cross street green interval, respectively, are used. Two vehicles per cycle turn from the
arterial to cross streets. One vehicle per cycle turns from cross streets to arterial. Ten vehicles
can be stored in a 200 foot long link and up to twenty-one vehicles can be released during a 40
second arterial green interval. Up to ten vehicles can be released during a 20 second cross street

green interval. The widths of a cross street and arterial are 40 and 60 feet, respectively. Since

35

both arterial lanes are similar in vehicle processing activities, except turning movements, (in and
out), the right lane of the anterial street is described.

Table 4.6 shows a simulation run output example. The table includes a partial output of
the arterial street right lane (first 30 vehicles). Vehicles with zero values for AT (arrival time) and
DT (departure time) at the third intersection turn on to the second cross street at the second
intersection. The vehicles with zero values for AT and DT at the first intersection, turn onto the
arterial street from the first intersection. Since the first intersection is used as a warm-up
intersection, by definition, no queue spillback occurs there.

A simulation begins with an arterial street red interval (cross streets green) att = 0. The
green intervals for the first and second intersections begin at t = 20 (20 seconds after the
beginning of the simulation). The green interval for the third intersection begins at t = 5 [20
(beginning of the green for the first intersection) + 45 (offset 3) = 65 - 60 (cycle length) = 5]. The
first vehicle in the queue (m = 1) departs the first intersection at t = 22.0 {green begins at t = 20)
and arrives at the second intersection at t = 29.8. The travel distance is 240 feet (link length 200
feet plus cross street width 40 feet), and the average overali speed is 30.9 {t./sec; therefore, it
takes 7.8 seconds for the first vehicle o arrive at the second intersection. The first vehicle passes
the second intersection without stopping because it arrives at the intersection during the green
interval and there is no queue. Fourteen vehicles (2 < m < 15) also pass the second intersection
without stopping for the same reason. The fifth vehicle arrives at the third intersection after the
third intersection signal turns red. Ten vehicles (6 < m < 15) arrive at the third intersection during
the red interval. Therefore, a queue spillback occurs when the fifteenth vehicle (m = 15) joins the
queue developed at the third intersection. The sixteenth vehicle has to wait at the stop line of the
second intersection until the fifteenth vehicle, caught in the second intersection, moves forward at
t=65+ 1.1 * 11 = 77.1 (the 2nd green of the 3rd intersection begins at t = 65). However, the
traffic signal of the second intersection turns red (at t = 60) before the fifteenth vehicle starts
moving forward. The fifteenth vehicle blocks the right traffic lane of the second cross street during
almost the entire cross street green [17.1 (60 <t < 77.1) seconds out of a 20 second interval (60
< t < 80)]. The remaining five vehicles (17 < m < 21) arrive at the second intersection during the
red fnterval. The first vehicle that passed the second intersection without stopping arrives at the
third intersectioﬁ at t = 37.6 and passes the third intersection without stopping. Three vehicles (2
< m < 4) also pass the intersection without stopping and two of them turn on to the second cross

street.

36

TABLE 4.6: OUTPUT EXAMPLE OF A SIMULATION RUN

s1) turn Ist intersection 2nd intersection 3rd intersection
m | in2) out3)| AT | DTS | AT DT | nQ26) | AT DT | nQ37)
1 0 0 20| 220/ 298| 298| 0O 376] 376] 0
2 0 1 4.0 245] 323| 323] 0 0 0] ©
3 0 1 6.0] 266] 344f 344| o0 422] 422] 0
4 0 2 80| 286] 364] 364] O 0 0] ©
5 0 2 10.0] 304] 382 382 0 46.0] 670} ©
6 0 2 12.0] 32.3| 40.0f 400 o0 49.8] 69.5 1
7 0 2 140 341] 418| 418] 0O 511 716] 2
8 0 2 16.0] 359| 437 437 O 524| 736| 3
9 0 2 18.0 37.7f 455]| 455 0 53.6| 754 4
10] 0 2 20.0] 395| 473] 473] O 54.7] 773] 5
111 0 2 220] 414] 49.1[49.1 0 55.8] 79.1 6
2] 0 2 24.0] 432| 509] 509| O 56.8] 809) 7
1310 2 26.0] 450] 528| 528| 0O 57.7] 827| 8
14 | 0 2 28.0| 468| 546] 546] 0 585| 845] 9
5] 0 2 30.0] 486) 56.4| 564| O 59.2| 86.4| 10
16 | O 2 32.0] 505 582 820] 0 848| 882] 11
171 0 3 340] 523] 621 845 1 0 O] 2
18 0 3 36.0 54.1| 634 86.6 2 959| 959 2
191 0 4 38.0] 559] 646] 886f 3 .0 0] ©
2] 0 4 40.0] 57.7] 658] 904| 4 982 982| 0
211 0 4 420] 959.6] 67.0| 923] 5 100.0§ 100.0}] ©
22 | 1 4 0 O] 79.4]| 941 6 101.8] 1018] 0
23 | 1 4 440] 82.0] 879| 959| 7 103.7] 103.7] O
24 | 1 4 46.0] 845] 972| 977| 5 105.5] 1270} 0
25 | 1 4 48.0| 86.6f 97.7] 995 1 109.3] 129.5 1
26 | 1 4 50.0] 88.6] 98.4]| 1014 1 1106} 1316] 2
27 | 1 4 52.0] 904 99.7] 1032] 2 111.9] 1336] 3
28 | 1 4 54.0] 92.3| 101.5] 105.0] 2 113.1] 1354| 4
29 1 4 56.0 94.1| 103.4]| 106.8 2 114.2] 137.3 5
30 | 1 4 58.0] 959| 105.2{ 1086] 2 115.3] 139.1 6

1) S = total number of vehicles simulated

2) in = number of vehicles turning from cross street to arterial street

3) out = number of vehicles turning from arterial street to cross street

4) AT = arrival time in seconds

5) DT = departure time in seconds

6) NQ2 = number of vehicles stored in the second intersection after the (m-1)th vehicle arrives at
the intersection

7) NQ3 = number of vehicles stored in the third intersection after the (m-1)th vehicle arrives at the

intersection

37

4.3.5 Input

The traffic simulation program consists of two separate versions, which permits one-way
or two-way street operation. The one-way operation version deals with a two-lane one-way
arterial and three two-lane one-way cross streets. The two-way operation version treats a two-
lane two-way arterial (total four lanes) and three two-lane one-way cross streets. Since both
versions use the same input file, the one-way operation version is chosen for input data
descriptions.

The program can be executed in two different modes, a single run and multiple run
modes. In the single run mode, the program runs a single case and produces detailed output
including arrival and departure times of each vehicle at each intersection. In the multiple run
mode, the program runs multiple cases (number of runs is determined by input data) in order to
find an optimal case with respect to one of three input parameters, offsets, green split, or cycle
length; and produces summarized outputs like network crossing times. in each mode (single or
multiple run), the program can be executed either with or without parameter variability. The
simulation input data are summarized in Table 4.7.

The first data set read by the MAIN program consists of three binary indicator variables;
the first variable mult specifies whether a simulation run includes a single case or multiple cases;
the second variable jeyc specifies whether a simulation run finds an optimal cycle length or not;
the last variable jvar indicates the type of parameters, uniformity or variability. If ioff1 is not equal
to ioff2 or jofft is not equal to joff2, then offset 1 or offset 2 is optimized. If jeyc is zero and incg
is greater than zero, then the green split is optimized. Two or three (if ipt is greater than zero)
phase operation is available in the two-way operation version. Average overall speed data are

included in the arrival subroutines and the RSPEED subroutine.

TABLE 4.7: SIMULATION INPUT DATA

Row | Column | Variable | Default Definition [Unit]

1 1-6 mult 0 number of cases:
0; a single case

1; multiple cases (for optimization)

1 7-12 jeye 0 cycle length optimization:
0; no

1; yes (optimization)

Table 4.7 continued on next page

38

Table 4.7 continued from previous page

Row | Column | Variable | Default Definition [Unit]

1 13-18 jvar 0 variability of parameters:
0; no (uniformity)
1; yes (variability)

2 1-6 nvol 2000 i number of vehicles to be simuiated

2 7-12 ncwu 10 number of cycles for warm-up time

2 13-18 tde 7.2 cross street traffic demand (arriving headway)
Iseconds]

2 19-24 nac 2 number of turning vehicles per cycle from
arterial to cross street

2 25-30 nca 1 number of turning vehicles per cycle from
cross street to arterial

3 1-6 dist(1) 200 | link length between the 1st and 2nd
intersections [feet]

3 7-12 dist(2) 200 | link length between the 2nd and 3rd
intersections [feet]

3 13-18 wida 60 width of arterial [feet]

3 19 - 24 widc 40 width of cross streets [feet]

3 25 - 30 avsh 20 average vehicle space headway [feet]

4 1-6 icl 60 cycle length

4 7-12 1gi 40 arterial green interval [seconds]

4 13-18 idxn 0 difference between maximum and minimum
arterial greens

4 19 -24 incg 10 increment of idxn (for optimization)

25-30 ipt 0 protected left turn phase duration (only for two-

way operation) [seconds]

4 31-36 jdq 7 minimum delay to determine a queue spillback
[seconds]

5 1-6 noff(1) 0 offset 1 [seconds]

5 7-12 ioff1 0 minimum offset 2 (0, for optimization)

5 13-18 joff2 C maximum offset 2 (C, for optimization)

Table 4.7 continued on next page

39

Table 4.7 continued from previous page

Row | Column | Variable | Default Definition [Unit]
5 19 - 24 joff1 0 minimum offset 3 (0, for optimization)
5 25-30 joff2 C maximum offset 3 (C, for optimization)
5 31-36 incre 15 increment of offsets (for optimization)

4.3.6 Validation and Calibration

One means of validating traffic simulation models is comparing simulated and field
observed measures of effectiveness. For simulation of a single intersection approach or even an
entire intersection, this is feasible. Simulation model output quantities can be appropriately
compared to field measured versions of the same quantities and the model can be tuned to
reproduce field measured quantities. However, even though field and simulated measures of
effectiveness agree, such apparent agreement does not guarantee all simulation model
components are properly emulating the real world. Significant positive and negative errors in
complementary model components can compensate for each other causing total output quantities
to appear correct. Therefore, calibration of model component parts is perhaps more important
than checking overall output measures of effectiveness. '

Network traffic simulation model validation, in terms of overali output quantities, requires
such large field data collection efforts that it is generally not feasible. Even if sufficient quantities
of appropriate field network data can be obtained, calibration of components of the simulation
system remains essential. Validation of the oversaturated arterial traffic simulation process has
been done primarily through calibration of components. Overall model output measures of
effectiveness have been checked for reasonableness and have been carefully examined for
extreme or boundary condition appropriateness.

As explained in the subsection 5.3.1, the departure headway data of the Efstathiadis
study (1992) were used. His data including 5915 field-observed data points were collected from
five intersections in Austin, Texas. Most vehicles included in his study were passenger cars
including mini vans and small trucks.

The definition and type of average overall speeds are described in subsection 5.3.3. The
average overall speed data were also collected from an arterial in Austin, Texas. Type 1 and
Type 2 speed data include 1061 and 1146 real-life observations, respectively. Ali the vehicles
measured were passenger cars including mini vans and small trucks.

Another important component of the model is the average time between successive

vehicle starts, which is used to calculate the time each vehicle in the queue starts moving. Based

40

on the George and Heroy study [They suggested 1.4 seconds for this value; 1966}, the average
time between successive vehicle starts is modified to 1.1 seconds to represent current traffic
conditions, appropriately.

To see how well the model represents real life under the conditions tested, a detailed
description of an example simulation run is provided in subsection 4.3.4. Two of the most
important model incidents are the arrival and departure times of each vehicle simulated. The
departure time, defined in subsection 5.3.3, is largely determined by the departure headway. The
arrival time, also defined in the subsection 5.3.3, is largely determined by the departure time and
average overall speed. Therefore, with the given traffic signal timing plans and arterial
configurations, each vehicle’s movement is mainly determined by the departure headway and
average overall speed. In addition to these two components, the average time between
successive vehicle starts is especially used to calculate the time a vehicle, caught in an
intersection when a queue spillback occurs, starts moving. Field-observed real-life data were
used for all the important model components and most important model incidents are mainly
determined by those components. It can reasonably be said that the model represents a real

situation.

4.4 SUMMARY

This chapter described how a traffic simulation model for traffic signal timing in
oversaturated conditions was developed. Fundamentals of traffic simulation and how they are
implemented in this model were discussed. The execution flow and the overall structure of the
program were described. A brief description of each subroutine and program details (execution
steps) of several important subroutines were summarized. Logic and assumptions used in
processing vehicles were discussed. For a better understanding of the model, a partial output of
an example simulation run was described. Finally, the simulation input data were explained in
detail. With this model, experiment design, simulation experiments, and analyses of simulation

experiment results are conducted in the next chapter.

41

42

CHAPTER 5 DESIGN AND ANALYSIS OF SIMULATION EXPERIMENTS

5.1 INTRODUCTION

In the previous chapter, a traffic simulation model for analyzing traffic signal timing in
oversaturated conditions was described. This chapter discusses experimental design, simulation
experiments, and analysis of results obtained through execution of the computer simulation
model. To simplify the analysis, a basic form of an arterial network, a one-way street and two-
phase signals, is considered first.

5.2 FORMULATION OF THE EXPERIMENTAL DESIGN

All applications of computer simulation models require an experimental design. In
simulation, an experimental design provides a way of deciding before the runs are made which
particular configurations to simulate so that the desired information can be obtained with the least
effort.

In experimental-design terminology, the input parameters and structural assumptions
composing a model are called factors, and the output performance measures are called
responses. Factors can be either quantitative or qualitative. Quantitative factors naturally assume
numerical values, while qualitative factors typically represent structural assumptions that are not
naturally quantified.

For each system design to be simulated, decisions have to be made on such issues as
initial conditions for the simulation runs, length of the warm-up period, simulation run duration,

and the number of simulation runs.

5.2.1 Objectives of Experiments

The objective of the experimental program was the development of a methodology that
would maximize the number of vehicles moved through an arterial network, which has an
oversaturated traffic demand at the arterial street entry and a moderate traffic demand at the
entry of cross streets, during a given time period. Additionally, the methodology must prevent
queue spillback or minimize the occurrence of queue spillback if inevitable.

As discussed in the previous chapter, the traffic demand at the arterial street entry is set
to 1800 vehicles per hour per lane (vphpl). If the saturation flow is 1800 vehicles per green hour
per lane, the entry of the arterial street will always be oversaturated unless it has continuous

signal green. The downstream intersection traffic demands are controlled by upstream

43

intersection green times. The traffic demand at the entry of cross streets is set to 500 vphpl.
Thus, the entry of cross streets could be under or over saturated depending on the green ratio. If
cross streets have less than 27.7 % (= 500/1800) available green time, the entries of cross
streets will be oversaturated, otherwise, they will be under saturated.

Since the main focus is on the arterial street rather than cross streets, a moderate traffic
demand (500 vphpl) for cross streets was chosen. If the same oversaturated traffic demand as in
the arterial street were used for cross streets, then all available green time should be given to the
direction favoring the largest number of lanes. This simple conclusion would maximize the

number of arterial network vehicles processed.

5.2.2 Factors and Responses

As listed below, five input parameters and three structural assumptions were considered.

A cycle length is broken into two components as design factors, which are an arterial green
interval and a cross street green interval. Thus, neither cycle length nor green ratio is a factor.
Offset i is the time difference between the initiation of green at intersection 1 and at intersection i.
Link length is the distance between two adjacent intersections excluding intersection width. Since
the effect of turning movements on queue spillback likelihood differs with link length, the number
of turning vehicles itself is not an appropriate factor. Therefore, the link length percentage that
would be occupied by a queue composed of all turning vehicles was used.
Input parameters (Quantitative factors)

* Arterial green interval: g

» Cross street green interval: gc

» Offset

¢ Link length: L

» Number of turning vehicles: N (as percentage of a link length)
Structural assumptions (Qualitative factors)

* Arterial operation: one-way or two-way

» Number of phases: 2-phase or 3-phase (only for two-way operation)

* Variability: no (uniformity) or yes (variability)

Tables 5.1 and 5.2 show the design matrix by qualitative and quantitative factors respectively.

44

TABLE 5.1: DESIGN MATRIX BY QUALITATIVE FACTORS

arterial operation variability 2-phase 3-phase1)
one-way no ! NA
yes I' NA
two-way no i 1]
yes ' '

1) 3-phase operation includes a protected left-turn phase on the arterial
and only applies to a two-way arterial.
TABLE 5.2: DESIGN MATRIX BY QUANTITATIVE FACTORS

factors lower limit upper limit increment

g 20 sec. 90 sec. 10 sec.

gc 20 sec. 60 sec. 10 sec.

C 40 sec. 150 sec. 10 sec.

offset 0 sec. C-10 10 sec.

N (turning vehicles) 10 % 30 % 10 %
link length 200 ft. 600 ft. 200 fi.

Responses

Network crossing time, which is the time required for a given number of vehicles to move
through the simulated network, was used as a response variable by which system efficiencies are
compared. To help explain the simulation outputs, three auxiliary performance measures, none of
which completely quantifies system efficiency, are used:

* Number of queue spillbacks per cycle (or queue spillback probability)
* Warm-up period (or number of vehicles simulated during this period)

* Number of vehicles simulated by each lane

5.2.3 Fractional Factorial Designs and Factor-Screening Strategies

As shown in Table 5.3, a total number of simulation runs can be calculated by multiplying
the number of levels in each cell. The required 29,070 simulation runs make this design almost
unmanageable even without considering qualitative factors and a protected left-turn phase length.
If, however, these additional factors are considered, the total number of simulation runs would
exceed 100,000. A fractional factorial design and a factor screening strategy are used to solve

45

this problem. A fractional factorial design is constructed by choosing a certain subset of all the
possible design points and then running the simulation for only these chosen points. A factor
screening strategy is formed by "screening out" some of the factors that are unimportant, fixing

these factors at some reasonable value and omitting them from further consideration.

TABLE 5.3: NUMBER OF SIMULATION RUNS (BY A FACTORIAL DESIGN)

factors lower limit upper limit increment # of levels
g 20 sec. 90 sec. 10 sec.
gc 20 sec. 60 sec. 10 sec. 3,230%
offset 2 0 sec. C-10 10 sec.
offset 3 0 sec. C-10 10 sec.
N (turning vehicles) 10 % 30 % 10 % 3
link length 200 ft. 600 ft. 200 ft.
total

* 42452,40+62,2+7213*82.43*0244*102+4*112+4*12243*132+2*1424152 = 3,230

Table 5.4 shows a revised design matrix by fractional factorial designs and factor-
screening strategies. For practical considerations, a minimum 40 seconds arterial green interval,
or a minimum 60 seconds cycle length, is used. A cycle length shorter than 60 seconds is not
appropriate for a saturated arterial network. As discussed before, the cross street traffic demand
is selected so that the degree of cross street saturation can be determined by the green ratio. The
default value for the cross street arriving headway is 7.2 seconds per vehicle (that is equivalent to
a 500 vehicles per hour demand) and the cross street green interval is fixed at 20 seconds. This

cross street green interval duration may cause under or over-saturation depending upon the

selected traffic demand.

TABLE 5.4: REVISED DESIGN MATRIX

factors lower limit upper limit increment # of levels
g 40 sec. 85 sec. 15 sec.
gc 20 sec. 20 sec. 0 42452,62472
offset 2 0 sec. C-15 15 sec. =126
offset 3 0 sec. C-15 15 sec.
N (turning vehicles) 10 % 20 % 10 % 2
link length 200 ft. 600 ft. 400 ft. 2
total 504

46

As indicated in Table 5.4, the required number of simulation runs was further reduced
through specifications for N, timing increments and link length. The maximum N value was
changed from 30 to 20 percent and increments for arterial green, offset 2, and offset 3 were
adjusted from 10 to 15 seconds. The number of link length levels was reduced to 2 by increasing
the increment from 200 feet to 400 feet. The revised design matrix 1 shows considerably reduced

design points, or 504, which is much more manageable.

5.3 INTRODUCING VARIABILITY TO PARAMETERS

Each simulated vehicle unit should be assigned a number of parameters which will be
used to determine appropriate responses and behavior within the simulation. The employed
method of introducing variability to the parameters for this simulation model is to regard all such
parameters as being random, and to randomly assign each unit a value from a specified
probability distribution. Three parameters considered for introducing variability are departure

headway, vehicle space in the queue, and vehicle speed.

5.3.1 Departure Headway

The departure headway is the time between successive vehicles departing the stop line
of a signalized intersection after the signal turns green. In the recent studies, Efstathiadis (1992)
and Moussavi and Tarawneh (1990) found that the departure headways for different queue
positions at signalized intersections follow the normal distribution. Therefore, using those study
results, the departure headways are assumed normally distributed with a mean 1.82 and a
standard deviation 0.43.

hdwy (n) =1.82 forn 24 (5.9)

where

hdwy (n) = departure headway between the (n-1)th and the nth vehicle

hdwy (1) = 2.04, hdwy (2) = 2.46, hdwy (3) = 2.12

To introduce variability to departure headways, the following procedure was adopted.
This procedure can be applied for other parameters having the same probability distribution.
Step 1. Random number generator (output: m(i)) : Generate uniform random deviates between

0.0 and 10
Step 2. Random normal (0, 1) deviate generator (output: vnor(i)) : Generate normally distributed

deviates with zero mean and unit variance by transforming uniform deviates to normai

deviates.

47

Step 3. Random normal (m, 32) deviate generator (output: hdwy(i)) : Generate normal random
deviates with a mean m and a standard deviation s by transforming the output of step 2

according to:

hdwy(i) = vnor(i) *s + m (5.5)
where
vnor = random normal (0, 1) deviates
s = standard deviation of departure headways

m = mean of departure headways

5.3.2 Vehicle Space in the Queue

As shown in Figure 5.1, a vehicle space (Xj) consists of a vehicle length (aj) and clear
space (bj). Let a vehicle length (a1,..., an) and clear space (b1,..., bn) be random variables
(independent and identically distributed) which are normally distributed with means mg and mp
and variances sa2 and sb2. Then a vehicle space (Xj,..., Xp) is a random variable which is
normally distributed with a mean mz + mp and variance sg2 + sp2.

aj: N (ma, sa2)

bi : N (mp, sb?) (5.6)
Xi: N (Mg + mp, 532 + sp?) (5.7)
> > a; = vehicle length

34 SlPis b; = clear space
X.
< : > X, = vehicle space = a; + b;

Figure 5.1: A vehicle space

Let L =link length
n = the maximum integer value which satisfies the following inequality
X{+X2+...+Xp<sLh
(n = number of vehicles in a link when it is full)
Y = total vehicle space when a link is full (a linear combination of the Xj's)
Y=X{1+X2+...+Xp
Since total vehicle space (Y) is a linear combination of n vehicle spaces (Xj), it is normally
distributed with a mean n * (ma + Mp) and variance n * (Sg2 + sh2).
Y : N (n (mg + mp), n (532 + sp2)) (5.8)

48

Example:

Let « vehicle length (a): mg = 14.7 ft, s52 = 1.352 [Data collected by students in Traffic
Engineering class at University of Texas at Austin taught by Dr. Clyde E. Lee; 110
vehicles in various university parking lots; 1994]
eg) P(147-3+135<a<14.7+3+1.35)

=P (10.65'<a<18.75')=P (127.8"<a<225") =99.7 %
» clear space (b): mp = 5.3 ft, sp2 = 1.02 [Edie (1961) and May (1990)) suggest jam
density as approximately 250 vehicles per lane-mile which equals 21.1 ft average vehicle

space. A conservative, rounded value of 20 ft is used for the average vehicle space,
therefore, mp is 5.3 ft (or 20 - 14.7).]

s link length (L): L = 200 ft
*n=10
Then e vehicle space (X):
Uy =mg + Mp = 14.7 + 5.3 = 20.0 ft.
sX2 =8a2 + sp2 = 1.352 + 1.02 = 1.682
» total vehicle space (Y = X1 + X2 + ... + X10):
Uy =n (mg + mp) =10 * 20.0 = 200.0 ft
sy2 =n (sg2 + Sp2) = 10 * 1.682 = (5.31)2
P(my-2sy<Y <my +2sy)=0.954
P (189.4 <Y <210.6) = 0.954
P (my -3sy <Y <my + 3sy) =0.997
P (184.1<Y <£215.9)=0.997
Approximately 95.4% of the values in any normal population lie within two standard
deviations of the mean. It is indeed rare to observe a value from a normal population that is much
further than two standard deviations from the mean. Since the length of two standard deviations
in the above example is approximately one half of an average vehicle space, introducing vehicle
space variability will not make a considerable difference in the value of n (the number of vehicles
in a link when it is full). Therefore, vehicle space uniformity can be assumed throughout the

simulation without loss of generality.

5.3.3 Vehicle Speed

Since the model is event based, identification of events to be tracked through the
simulation process is important. Vehicular arrival and departure times are two such events. Arrival

time in the simulation model! is defined as the time a vehicle arrives at a link by joining a queue or,

49

if no queue exists, crossing the intersection reference line. Departure time is defined as the time a
vehicle crosses the reference line and enters the intersection. If no queue exists in the link during
a green interval, the intersection arrival time is the same as the departure time. The intersection
arrival time is determined by the following relationship:

arr = depp + dist / speed (5.9)
where

arr = arrival time at the downstream link

depp = departure time at the upstream intersection

dist = distance traveled from the reference line of the upstream intersection to the

downstream link

speed = average overall speed

Prior to experimental speed data collection, vehicle speed was hypothesized to depend
upon vehicle queue position, and available downstream clear space. For a given downstream link
length, available clear space depends upon downstream queue length. Therefore, according to
the hypothesis, vehicle speed profiles from departure to arrival time should be determined by
vehicle upstream link queue position and downstream link clear space determined by queue
presence and length. If k indicates the vehicle queue position in the upstream link (k"h vehicle in a
queue when a green indication begins) and nq is the number of vehicles queued in the
downstream link when the vehicle arrives, six vehicle speed profile types are possible as
presented in Figure 5.2. For convenience, constant acceleration and deceleration rates are
assumed here.

If there is a queue stopped in the downstream link (nq > 0), an advancing vehicle must
stop and join the queue. Even without a queue (nq = 0), a vehicle arriving during a red interval
must stop. In either stopping case deceleration to a stop shoulid be included in the vehicle speed
profiles as shown in the Figure 5.2 Type 1 examples. If there is no queue stored in the
downstream link during a green interval (ng = 0), an advancing vehicle passes the downstream
intersection without stopping. In this case, the vehicle speed profile is one of the Type 2 examples
shown in Figure 5.2.

If k equals one (first vehicle in the queue), an entire acceleration portion (from speed zero
to speed V) is included in the vehicle speed profile (see the first column in Figure 5.2). For the
second vehicle through the ih vehicle in a queue (2 < k < i), the vehicle speed when passing the
reference line is greater than zero. For the (i+1)"h vehicle through the last vehicle in a departing,

accelerating queue (k > i), the reference line speed is a cruising speed V. in this case, no

50

acceleration portion is included in the vehicle speed profile as shown in the last column of Figure

5.2.

k
nq

kD=1

2<=k<=1i

k>=i+l

Type 1

ng>0
or

nq=0

[red]?

Type 1A
speed

Lreference line time

>

Type 1B

Type 1C

Type 2

ng=0
[green]

Type 2A

>

Type 2B

Type 2C

1) k=

index for vehicle position in departing queue

2) [red] : a vehicle arrives at the downstream intersection during a red interval

Figure 5.2: Vehicle speed profiles

A field study was conducted to provide appropriate distributions of average overall

speeds. The site was a six-lane arterial in the Central Business District of Austin, Texas. Figure

5.3 shows a test site layout. Two phase operation and a 60 second (90 second at 2nd Street)
fixed-time traffic signal cycle were used.

51

6th street

T North bound

4th street

Congress Ave
¢ South bound

2nd street

——

A

312 ft

313 ft

670 ft

Figure 5.3: Field study site configuration

52

Type 1 speed

Preliminary observation of southbound traffic indicated most vehicles accelerating past
reference line A, at Sixth Street, (see Figure 5.3) stopped in the downstream link due to the Fifth
Street signal offset. Therefore, the middle lane of southbound Congress Avenue between Sixth
and Fifth Streets was selected for Type 1 speed data collection. The site was videotaped from the
roof of a 22-story building located at Congress Avenue and Third Street. Since Type 1 speed data
collected from this site provide short downstream clear space (up to 370 ft), the middle lane of
southbound Congress Avenue between Fourth and Second Streets was also selected for Type 1
speed data with long downstream clear space (up to 730 ft). Due to different traffic signal cycle
lengths at Fourth and Second Streets, both Type 1 speed and Type 2 speed profiles could be
observed here. This site was videotaped from the 32nd floor of a building located at Congress
Avenue and Sixth Street. During the replay of the videotape, departure times at reference lines A
and C and arrival times in the downstream links were measured for each vehicle using a
stopwatch which measured to the nearest one-hundredih second. Also, the traveled distance for
each vehicle was recorded so that an average overall speed could be calculated. No heavy
vehicles or vehicles passing the downstream intersection without stopping were considered.

Results of this field study are summarized in Table 5.5. The data were used to examine
the hypothesis that vehicle speeds were functions of downstream clear space and the vehicles
own queue position. As indicated in Table 5.5, speeds for different queue positions (k values) are
very similar and, in fact, the four queue position means of each data set (Table 5.5-a/b) are within
a 99 percent confidence interval of each grand mean. Therefore, these data indicate no
statistically significant effect of queue position on vehicle speeds. Available downstream clear
space and speed, however, appear to have a statistically significant relationship. This retationship
has been captured in regression equation (5.10) which is shown with the plotted data in Figure
5.4. The equation predicts overall average (or space mean) speed using a variable called
downstream clear space. The definition of downstream clear space as used here is provided in
Figure 5.5. The correlation coefficient for speed versus downstream clear space (1061 data
points) is statistically significant beyond the 1 percent confidence level and Student's T test of the
slope being different from zero also shows significance beyond the 1 percent level. Therefore, the
following relationship including all data points was selected for predicting Type 1 speed as a
function of downstream clear space:

y=13.033 + 0.026584 x (x<730ft, R=0.894) (5-10)

where

y = average overall speed (ft/sec)

53

x = downstream clear space (ft, see Figure 5.5)
R = correlation coefficient
TABLE 5.5: RESULTS OF FIELD STUDY FOR TYPE 1 AVERAGE OVERALL SPEED

position (k) no. obs. mean (ft/sec) i mean (mph) std. dev.(ft/sec)

a. Type 1 speed data with short downstream clear space 1)

1 85 17.8 12.1 2.78
2 53 17.5 11.9 2.44
3 38 17.3 11.8 2.66
>4 412 18.3 12.5 3.48
all 588 18.1 12.3 3.27
b. Type 1 speed data with long downstream clear space 2)

1 66 29.1 19.8 3.55
61 29.4 20.1 3.02

3 52 28.9 19.7 2.75
>4 294 28.9 19.7 3.70
all 473 29.0 19.7 3.50

1) Data collected from southbound Congress Avenue between 6th and 5th Streets (downstream
clear space < 370 ft)

2) Data collected from southbound Congress Avenue between 4th and 2nd Streets (350 ft <
downstream clear space < 730 ft)

54

Average overall speed (fps)

] y = 13.033 + 2.6584e-2x RA2 = 0.799

0 150 300 450 600 750
Downstream clear space (ft)

Figure 5.4: Relationship between Type 1 speed and downstream clear space (data points: 1061)

Figure 5.5 illustrates downstream clear space and queue spillback. Downstream clear
space is defined as the downstream link length to be traveled by a vehicle departing the
reference line in lane i. As shown in equation (5.10), the average overall speed of vehicle A (see
Figure 5.5-a) is a function of the downstream clear space. As the available downstream link clear

space decreases, the average overall speed decreases.

55

f Cross street

Arterial =i l

[IR S

EE
EE

\

(a) Downstream clear space

—

Lr—r

EEESESESESIEUIZESEEI

(b) Queue spillback

Figure 5.5: Downstream clear space and gqueue spillback

When the downstream link is full during the upstream link green interval [see arterial lane
2 (i = 2) in Figure 5.5-b], one additional vehicle B is permitted to join the downstream queue
causing queue spillback. A non zero speed is assigned by equation (5.10) to any vehicle
departing the upstream intersection unless a queue spillback has already occurred in the
downstream link [see arterial lane 1 (i = 1) in Figure 5.5-b]. In this case, vehicle C cannot move
forward, therefore, no speed is assigned. As soon as space becomes available, vehicle C moves
with speed determined by equation (5.10).

When the downstream link (i+1) is filled with stopped vehicles, upstream vehicles (link i)

with a green signal, sometimes move into the intersection joining the stopped queue constituting

56

a queue spillback. Other times, under the same conditions, upstream vehicles wait for
downstream clear space(s) before advancing avoiding being trapped in the intersection. This
driver behavioral characteristic could not be reliably predicted so a compromise was chosen.
Given a green signal and a filled downstream link, one storage space in the intersection is always
provided to the advancing traffic stream. This concept is é reasonable behavioral compromise
between the extremes of no movement without downstream clear space and aiways filling the
intersection behind the stopped downstream queue.

Therefore, the downstream link length available for queued vehicles includes storage
spaces in link i+1 plus one intersection space. If all these storage spaces are full, then one
vehicle is stopped in the intersection, and zero speed is assigned to the next vehicle attempting
movement into the intersection. If these storage spaces are not full, non zero speeds are
assigned to upstream vehicles using equation (5.10). Within the simulation code, the case of link
i+1 and the intersection space being filled is handled as a special situation.

Type 2 speed

As shown in Figure 5.2, vehicles with Type 2 speed profiles pass the downstream
intersection without stopping. Vehicles with Type 2C speed profile reach the cruise speed V
before or when crossing the reference line. For the speed data application purpose, Type 2C
speed profile was divided into two categories: 1) Type 2C-1, in which vehicles join the stopped
queue and cross the reference line and 2) Type 2C-2, in which vehicles pass both the upstream
intersection and the reference line without stopping.

As explained before, observation of Congress Avenue vehicles crossing reference line C
(see Figure 5.3) indicated that some of them passed through the downstream intersection without
stopping due to the different traffic signal cycle lengths at Fourth and Second Streets. Since this
trajectory is the Type 2 speed profile, the middle lane of southbound Congress Avenue between
Fourth and Second Streets was selected for Type 2 speed data collection. This site was
videotaped from the 32nd floor of a building located at Congress Avenue and Sixth Street.
Departure time at reference line C (see Figure 5.3) and crossing times at six points (80, 160, 240,
360, 500, and 640 ft from reference line C) in the downstream link were measured for each
vehicle during videotape replay. Only vehicles passing the downstream intersection without
stopping (Type 2 speed profile) were considered. Heavy vehicles or vehicles with large
deceleration rates were excluded.

Results of this field study are summarized in Table 5.6 and Figure 5.6. These data
provided another opportunity to test the hypothesis that overall average speeds from departure to

arrival vary with queue position and travel distance [Instead of downstream clear space, travel

57

distance was used in Type 2 speed case.]. As presented in Table 5.6 and Figure 5.6, when travel
distance is short (80 ft or 160 ft), space mean speeds (Types 2A/2B/2C-1) among the four queue
positions (k = 1, 2, 3, or k > 4) are different and the differences are statistically significant at the
0.01 level. On the other hand, when travel distance is long (500 ft or 640 ft), space mean speeds
(Types 2A/2B/2C-1) among the four queue positions (k = 1, 2, 3, or k > 4) are not statistically
different at the 0.01 level. Therefore, the effect of queue position on vehicle speeds varies with
travel distance. When travel distance is short, a statistically significant queue position effect on
vehicle speed exists. On the other hand, when travel distance is long, the effect of queue position
on vehicle speeds is not statistically significant.

Due to the nature of oversaturated traffic operations, however, Type 2 speed profiles are
rarely observed. Even though space mean speeds among the different queue positions are
different when travel distance is short (80 ft or 160 ft), minimum travel distance applied for Type 2
speed is 240 ft. Space mean speeds among the different queue positions are not considerably
different when travel distance is medium (240 ft or 360 ft). Of course, the differences among
space mean speeds for the different queue positions are not statistically significant at a 0.01 ievel
when travel distance is long (500 ft or 640 ft). Therefore, judgment was made to use one grand
mean and standard deviation for each travel distance (see series 5 in Figure 5.6 and Table 5.6)
instead of using four different statistics for the four queue position groups for each travel distance.

As shown in series 6 of Table 5.6 and Figure 5.6, Type 2C-2 speeds are, regardless of
travel distance almost constant. Since Type 2C-2 speed profiles can exist only when vehicles
pass both the upstream intersection and the reference line without stopping, the hypothesized
relationship between speeds and queue position was not relevant. All six means are within a 99
percent confidence interval of the grand mean 42.8 fi/sec. Therefore, these data indicate no
statistically significant effect of travel distance on vehicle speeds. The same procedure applied to

the departure headway in subsection 5.3.1 was used to introduce variability to vehicle speeds.

58

TABLE 5.6: RESULTS OF FIELD STUDY FOR TYPE 2 AVERAGE OVERALL SPEED

k (freq) | distance®) (ft) | 80 160 240 360 500 640
a) Types 2A/2B/2C-1 (Number of observations: 612)

mean (fps) 19.6 25.3 28.5 31.7 34.6 36.2

Nk=1 mean (mph) 13.4 17.3 19.4 21.6 23.6 24.7

(26) st.dev. (fps) 2.36 2.71 2.77 3.02 3.42 3.62

mean (fps) 23.6 28.4 30.6 32.9 35.1 36.1
2Yk=2 mean (mph) 16.1 19.3 20.9 22.4 23.9 24.6
(25) st.dev. (fps) 2.55 2.60 2.61 2.81 3.20 3.18

mean (fps) 27.0 31.0 32.6 34.3 36.0 36.9
3)k=3 mean (mph) 18.4 21.1 22.2 23.4 24.5 25.2
(21) st.dev. (fps) 2.46 2.63 2.90 3.11 3.22 3.46

mean (fps) 30.2 32.6 33.4 34.3 35.8 36.6
4Hk=24 mean (mph) 20.6 22.2 22.8 23.4 24.4 24.9
(30) st.dev. (fps) 3.05 2.83 2.93 3.21 3.56 3.47

mean (fps) 25.2 29.4 31.3 33.3 35.3 36.4
BYk=n mean (mph) 17.2 20 21.3 227 241 24.8
(102) st.dev. (ips) 4.85 3.90 3.38 3.19 3.36 3.40

b) Type 2C-2 (Number of observations: 534)

mean (fps) 428 | 437 i 430 i 422 426 i 424
8)k=n mean (mph) 292 i 298 i 293 i 288 i 290 i 289
(89) st.dev. (ips) 666 i 650 i 6.34 i 623 i 624 i 5091

1) Travel distance from the reference line

59

50

M
ey
S
k=]
[}
2
2 30
s
g 20
(]
&
g 10
Q
>
<

0

Figure 5.6: Relationship between Type 2 speed and distance for different queue positions

As discussed in Type 2 speed data analysis, travel distance and Type 2 speed (Types
2A/2B/2C-1) appear to have a statistically significant relationship. As an alternative, an attempt
was made to draw a general relationship between Type 2 speed (Types 2A/2B/2C-1) and travel
distance from the Type 2 speed data based upon the assumption that Type 2 speed trajectories
of vehicles in different queue positions are similar. Travel distances of Type 2 speed data were
adjusted for the second through the last vehicle in a queue (k = 2) by adding the distance from
the reference line to each vehicle stopped position to each vehicle travel distance. Therefore,
unlike Type 2 speed data in Table 5.6 and Figure 5.6, in this relationship travel distance indicates
the distance not from the reference line but from the stopped queue position. This relationship
has been captured in regression equation (5.11) which is shown with the plotted data in Figure
5.7. Therefore, the following relationship including all data points was selected for predicting Type

k=1

—— 2)k=2 -
g 3)k=3
———)k 2 4
......... Sy ronnes. 5) k=n “1
e 8) k= n (Type 2C-2)
t f t
100 200 300 400 500 600

Distance (ft)

2 speed (Types 2A/2B/2C-1) as a function of travel distance:

y = -6.1525 + 15.268 * LOG(x) (x<760fi, R =0.785) (5.11)

where

‘y = average overall speed (ips)

x = travel distance (ft)

60

700

50
")
2
~ 40 o
o o}
m -
-4
o 30 -

gL 3o n

giopatiapoaar

5.1525 +{15.268*LOG(x) R~2 = 0.616

Average overall
— N
o o
~
"
)

/ B Type 2 Speed

0 100 200 300 400 500 600 700 800

Distance (ft)

Figure 5.7: Relationship between Type 2 speed and travel distance (data points: 612)

5.4 ONE-WAY ARTERIAL OPERATION

As shown in Figure 5.8, a one-way two-lane arterial consisting of three intersections with
one-way two-lane cross streets is considered. A common traffic signal cycle length along the

arterial and basic two-phase operation are applied.

61

2 —_— __L.,r —_—
1 —_— —~ —_—> >
1 H I
! I I
I 1 I
. 1] . l
! ! !
1st cross street 2nd cross street 3rd cross street
o 1: —_ —_— —_—
: > —_— —_—

I

Figure 5.8: Arterial configuration for a one-way operation

5.4.1 Experimentation

With the experimental design derived in the previous section (see Table 5.4), one-way
operation experimentation was conducted. As shown in Table 5.4, two different link lengths (200
and 600 feet) and four different cycle lengths (60, 75, 90, and 105 seconds) were used. A system
performance measure was the time required to process a given number of vehicles (2000 here)
through the arterial system consisting of two arterial lanes and six cross street lanes.

Tables 5.7 and 5.8 present summarized results when links are 200 feet and 600 feet long
respectively. Each table shows results of 126 simulation runs that are one fourth of the total 504
design points. The revised experimental design requires two different levels of N for both arterial
and cross street turns (turning movements as percentages of link length). However, twenty
percent for turning movements into cross streets and 10 percent for turning movements into the
arterial or one value per street type, was used. The reasons are: first, preliminary simuiation
results using each of the two N values for each street type were not noticeably different from each
other. Second, since queue spillbacks from cross streets block the arterial causing more serious
system performance effects than spillbacks from the arterial, a larger value (20 percent) was
applied for turning movements into cross streets. Therefore, the total design points were reduced
to 252.

62

Results of the simulation experiments indicate that for a given link length, the overall
pattern of results is very similar regardless of the cycle length. In ail cases, particular patterns,
which consist of similar network crossing times, are formed along the diagonal whether they are
maximum or minimum [see the shaded cells or adjacent cells in Tables 5.7 and 5.8]. Only the
magnitude of the network crossing times, not the pattern, changes when a cycle length changes.

For 200 foot links, the simultaneous green, which means simultaneous onset of the green
phases setvicing the arterial, produces minimum network crossing time irrespective of the cycie
length. This result is identical to what Lieberman et al. (1986) found in their study. The resulit of
their study indicates that in the presence of moderate arterial queues, the optimal relative offsets
along these arterials are approximately zero (simultaneous green). Moreover, their study is based

upon closely spaced high traffic density networks which are very close to the conditions of this

| study (especially for a 200 foot link case).

With the same link length and cycle length, combinations of offset 2 and offset 3 produce
a wide network crossing time range. When offset 2 is 15 seconds greater than offset 3, network
crossing times are maximum (see the shaded cells in the Table 5.7) indicating lowest efficiency.
When offset 2 is equal to offset 3, each network crossing time, within the same row or column, is
minimum with a few exceptions. When offset 2 and offset 3 are 30 seconds respectively, network
crossing times are greater than minimum. This indicates that there is a combined effect of offsets

on the network crossing times, or system efficiency.

63

TABLE 5.7: NETWORK CROSSING TIME (SEC) [ONE-WAY OPERATION, L = 200 FT]

offset 3 0 15 30 45 60 75 90
offset 2 a.C=60sec.(g=40,r=20
1370 | 2132 |

1705
1517
1386

b. C=75sec. (g=55, r=20)

S E— 1261 ¢ 1344 : 1812 : 1917
LR 1268 : 1357 i 1751 2052
30 2174 1447 { 1510 i 1912
45 1821 i 2174 1649
60 1501 1938 1420
c.C=90sec. (g=70, r=20)
A 1917 i 2307
LT 1749 i 2189 | 2472
30 2609 1562 i 1874 i 2391
45 2385 1912
60 1956 { 2193 1683
75 1535 | 1895 1451

d. C=105sec. (g =85, r = 20)
1388

64

Figures 5.9 - 5.12 illustrate results of simulation runs when links are 200 feet long (same as Table

5.7).
2500
=
[0}
& 2000
[a%}
5
[2]
5
1500
1000
0 15 30 45 |||

offset 3 (sec)

Figure 5.9: Network crossing time (sec) [one-way, L = 200 ft, C = 60 sec]

4000

3500

3000

2500

offset 2 (sec)

2000

1500

0 15 30 45 60 1000

offset 3 (sec)

Figure 5.10: Network crossing time (sec) [one-way, L = 200 ft, C = 75 sec]

65

offset 2 (sec)

0 15 30 45
offset 3 (sec)

60

75

4500
4000
3500
3000
2500
2000
1500
1000

Figure 5.11: Network crossing time (sec) [one-way, L = 200 ft, C = 90 sec]

offset 2 (sec)

0O 15 30 45 60
offset 3 (sec)

Figure 5.12: Network crossing time (sec) [one-way, L = 200 ft, C = 105 sec]

66

75

90

5500
5000
4500
4000
3500
3000
2500
2000
1500
1000

When links are 600 feet long, simultaneous green does not produce minimum nefwork
crossing times as shown in Table 5.8. Furthermore, compared with the shaded cells of Table 5.7,
the shaded cells of Table 5.8, which indicate maximum network crossing times, are shifted
downward by 15 seconds. This is due primarily to the link length difference which in turn ieads to
an increase in the travel time. When links are 200 feet long and are empty, it takes 12.4 seconds
for the first vehicle in the queue {o arrive at the downstream intersection (travel distance is 240
feet including cross street width of 40 feet). When a link length is 600 feet, it takes 21.3 seconds
for the first vehicle in the queue to arrive at the downstream intersection. Thus, the difference of
link length (400 feet) causes a 8.9 second increase in travel time, which is close to the 15
seconds mentioned above.

When offset 2 is 30 seconds greater than offset 3, network crossing times are maximum
(see the shaded cells in the Table 5.8) indicating lowest efficiency. When offset 2 is 15 seconds
greater than offset 3, network crossing times are minimum indicating highest efficiency. This
result is different from that of a shorter link case (200 feet). Consequently, this result implies that
under a fairly saturated condition, as link length becomes longer, the green indication of a
downstream intersection should start sufficiently earlier than that of an upstream intersection so
that the downstream link can have room for incoming vehicles. Figures 5.13 - 5.16 illustrate

results of simulation runs when links are 600 feet long (same as Table 5.8).

67

TABLE 5.8: NETWORK CROSSING TIME (SEC) [ONE-WAY OPERATION, L = 600 FT]

offset 3 0 15 30 45 60

75

90

offset 2

b.C=75sec. (g=55,r=20

c.C=90sec. (g=70, r=20)

0 1512 1816 2148 2868

LT 1325 : 1502 : 1801 : 2298

L —— 1563 2288 i 3108
45 1893 2277
60 2262 1619 1889
75 1712 2004 1319 1504

d. C =105 sec. (g = 85, r = 20)

0 1533 1892 2001 2508

L ' 1633 i 1752 i 2102

R
45
60
75
90

68

offset 2 (sec)

0 15 30 45
offset 3 (sec)

Figure 5.13: Network crossing time (sec) [one-way, L = 600 ft, C = 60 sec]

0-
3500
I 154 3000
Q
)]
2
o~ 30 2500
]
=
o 2000
45
1500
60 1000
0 15 30 45 60
offset 3 (sec)

Figure 5.14: Network crossing time (sec) [one-way, L = 600 ft, C = 75 sec]

69

0 15 30 45
offset 3 (sec)

60

75

4500
4000
3500
3000
2500
2000
1500
1000

Figure 5.15: Network crossing time (sec) [one-way, L = 600 ft, C = 90 sec]

0 15 30 45 60
offset 3 (sec)

75

90

5000
4500
4000
3500
3000
2500
2000
1500
1000

Figure 5.16: Network crossing time (sec) [one-way, L = 600 ft, C = 105 sec]

With the same link length, different offset combinations yielded a wide range of network
crossing times. For example, the network crossing time ranges from 1388 seconds to 5021

seconds for a 105 seconds cycle length for a 200 feet link case. A small offset difference can

70

make a big difference in results (one second change in offset 2, from 7 seconds to 8 seconds, for
a 105 seconds cycle length for a 200 feet link case, made 1762 seconds difference in network
crossing time). Consequently, it can be said that offset is one of the dominant factors affecting
system efficiency. Two different link lengths, 200 and 600 feet, produced significantly different
results for the most and least efficient offset combinations even though the overall diagonal
pattern of results was similar.

As shown in Tables 5.7 and 5.8, when best offsets are not used, network crossing times
increase as the arterial green increases. However, when best offsets are used, the arterial green
interval does not have a considerable effect on the results. When best offsets are not used, the
delay caused by a queue spillback increases as the arterial green increases. For example, when
one of the worst offset combinations, 15 second offset 2 and zero offset 3, was used, network
crossing times for the 40, 55, 70, and 85 second arterial green intervals (60, 75, 90, 105 second
cycle lengths, respectively), were 2501, 3581, 4301, and 5021 seconds, respectively. The delay,
caused by a queue spillback in lane 7 on the arterial (see Figure 5.8), for the 60, 75, 90, and 105
second cycle length, was about 28, 48, 63, 78 seconds per cycle respectively.

To examine the effect of a link length on the results, minimum and maximum network
crossing times when links are 200 and 600 feet long respectively, are compared. For each cycle
length, a 600 foot link produces slightly more efficient results than a 200 foot link. Minimum
network crossing times of a 600 foot link are slightly shorter than those of a 200 foot link.
Maximum network crossing times of a 200 foot link are slightly longer than those of a 600 foot
link. Since a shorter link has smaller link storage capacity, the link becomes saturated more
quickly. With the same traffic conditions, therefore, queue spillback is more likely to occur and

delay caused by queue spillback will increase as link length decreases.

5.4.2 Experimentation with Variability

As discussed in section 5.3 variability was introduced to parameters, departure headway
and vehicle speed. Tables 5.9 and 5.10 present summarized results when links are 200 feet and
600 feet long respectively. In general, the experimentation result with variability is not very
different from the result without variability. This is because each parameter, generated randomly
with a given probability distribution, has little effect on the result. Combinations of these
parameters, which may produce additive parameter deviations, are more likely to affect the resuilt.

As shown in Tables 5.9 and 5.10, with random variability both the minimum and
maximum network crossing times for each cycle length and link length tend to become more

extreme compared to the no variability cases. However, generally, variability does not change

71

earlier conclusions regarding best cycle lengths or offset combinations. In other words,
randomness of headway and speed variables is equally likely to have positive, negative, or no
effect on the simulation results.

TABLE 5.9: NETWORK CROSSING TIME (SEC) [ONE-WAY OPERATION, WITH VARIABILITY,

L = 200 FT]
offset3| © 15 30 45 60 75 90
offset 2 a.C=60sec. (=40,r= 20)
0 1379 i 1384 i 1855 i

b. C=75sec. (g =55, r=20)

c.C=90sec. (g=70,r=20)

L 1657 i 1500 i 2093 i 2144

LT 1551 1824 2758
30 2660 2393
45 2451 1908
60 1906 1640
75 1559 1633

72

TABLE 5.10: NETWORK CROSSING TIME (SEC) [ONE-WAY OPERATION, WITH
VARIABILITY, L = 600 FT]

offset 3 0 15 30 45 60 75 90
offset 2 a. C =60 sec. (g =40

¢.C=90sec. (g=70, r=20)

0 1511 1761 2530 3187

d5 1380 | 1886 | 1797.. 2308

B0 1581 1916 [2735 : 3047
45 3546 1627 1890 2720
60 2717 2901 1625 1887
75 1892 2427 1603 1531

d. C =105 sec. (g= 85, r=20)

0 1564 1897 2082 2517

A5 1303 | 1567} 1768 : 2088

B0 1538 1 1560 : 1787 : 2216 ! 3208 @ 4261
45 4249 1489 1561 1880 2226 3196
60 3184 3401 1434 1891 2532
75 2532 2691 4211 1644 1872
90 1844 2543 2756 1551 1571

73

5.4.3 Examples of Simulation Runs

For convenience and without losing generality, a selected cycle length and link length
were used to examine the results in detail. Short cycle length (75 seconds) with a short link length
(200 feet), and long cycle length (105 seconds) with a long link length (600 feet) are selected. For
each case, the best and worst offset combinations were chosen for further explanations.

Short cycle length and short link length

input parameters include the following:

2. Cycle length = 75 seconds (55 seconds arterial green, 20 seconds arterial red)

2 Turning movements = 2 vehicles per cycle from arterial to cross street (N = 20 %), 1 vehicle per
cycle from cross street to arterial (N = 10 %)

2 Link length = 200 ft. (up to 10 vehicles can be stored)

2 offset 2 and offset 3 = 0 to 60 seconds (15 seconds interval)

2 Warm-up period = 10 signal cycles (10*75 = 750 seconds)

2. Average vehicle space headway = 20 ft.

2 Intersection width = 40 ft. (E-W), 60 ft. (S-N)

Results

Offset i is defined as the time difference between the initiation of green at intersection 1
and at intersection i. Offset 1 is fixed at zero and as discussed in the previous section, the
intervals of offsets 2 and 3 are 15 seconds. Since the cycle length is 75 seconds, offsets 2 and 3,
which have 25 combinations, vary from 0 to 60 seconds. Table 5.7-b shows a summarized result
when a cycle length is 75 seconds. ‘

To examine the effect of the number of simulated vehicles on the result, the number of
vehicles simulated is reduced from 2000 to 1200. As shown in Table 5.11, the overall pattern
formed in horizontal, vertical, and diagonal directions is very similar to that in Table 5.7-b. This
implies that if the start-up time is determined correctly, the result is not sensitive to changes of the

network crossing time.

74

TABLE 5.11: NETWORK CROSSING TIME (SEC) [FOR 1200 VEHICLES, L = 200 FT]

off2 off3 0 15 30 45

Table 5.12 summarizes the number of vehicles simulated on each lane when offset 3 is
zero and offset 2 varies. Table 5.13 shows the number of vehicles simulated on each arterial lane
' per 55 second green interval and offsets as in Table 5.12. Since up to 29 vehicles can be
processed on each arterial lane during a 55 second green interval, with simultaneous greens, this
offset combination is most efficient. When offsets 2 and 3 are zero, network crossing time is
minimum and the number of vehicles simulated on each arterial iane per cycle is maximum.
When offset 2 is 15 and offset 3 is 0, network crossing time is maximum and the number of
vehicles simulated on arterial lanes per cycle is minimum. As offset 2 increases past 15 seconds,
system efficiency increases. The more vehicles are processed on the arterial during the arterial
green interval, the smaller network crossing time (the more efficient system performance) is
produced. Therefore, system efficiency is proportional to the number of arterial vehicles simulated

per cycle.

TABLE 5.12: NUMBER OF VEHICLES SIMULATED ON EACH LANE (FOR 2000 TOTAL

VEHICLES)
offset sim'n lane number
off2 { off3 | perd 1 2 5 6 7 8 9 10
0 0 1261 | 510 { 510 { 164 : 162 §{ 164 i 162 : 164 i 162
15 0 3581 | 48 48 i 478 0 470 0 478 : 478
30 0 2174 1 261 i 290 § 290 0 290 : 289 [290 i 290
-45 0 1821 | 432 : 349 i 247 0 240 : 240 : 247 : 245
60 0 1501 | 520 § 480 i 200 0 200 : 200 : 200 : 200

75

TABLE 5.13: NUMBER OF VEHICLES SIMULATED ON EACH ARTERIAL LANE PER CYCLE
(FOR 2000 TOTAL VEHICLES)

offset (sec) simulation arterial lane
off2 off3 period (sec) right left
0 0 1261 29 29

15 0 3581 1 1

30 0 2174 9 9
45 0 1821 18 13
60 0 1501 26 23

Case 1. Simultaneous green (off2 = off3 = 0)

Simultaneous green produces the minimum 1261 second network crossing time. No
queue spillback occurs in any lane throughout the simulation. A 3.5 seconds delay in the left lane
of each cross street due to turning vehicles from the arterial indicates a queue spillback danger
but none occurred. ’

Case 2. (off2 = 15 and off3 = 0)

This offset combination gives the maximum network crossing time of 3581 seconds
indicating poor performance. The arterial offsets seem to initiate cross street queue spillback
which, in turn, precipitates arterial queue spillback and system failure. As shown in Table 5.12,
both arterial lanes accommodate only 48 vehicles during this network crossing time due to
continuous cross street queue spillback. Since the right arterial lane is blocked by queue spillback
from the left lane of the second cross street during most of the arterial green interval (52 out of 55
seconds), only one vehicle can be released per green interval. By the chain effect, the right lane
of the first cross street is continuously blocked by queue spillback from the right arterial lane.
Therefore no vehicle can be processed in this lane throughout the simulation. Queue spillback
from the left lane of the third cross street blocks the left arterial lane during the most of the arterial
green interval (52 out of 55 seconds). By the same chain effect, the right lane of the second cross
street is continuously biocked by queue spillback from the left arterial lane. Also no vehicle can be

processed in this lane throughout the network crossing time.

76

Long cycle length and long link length
The same input parameters as the previous section are used except 105 second signal
cycles and 600 feet link lengths replace the 75 second cycles and 200 feet links. Parameters

used are the following:

2 Cycle length = 105 seconds (85 seconds arterial green, 20 seconds arterial red)

¥ Link length = 600 ft. (up to 30 vehicles can be stored)

2 Turning movements = 6 vehicles/cycle from arterial to cross street (N = 20 %), 3 vehicle/cycle
from cross street to arterial (N = 10 %)

Y offset 2 and offset 3 = 0 to 90 seconds (15 seconds increment)

2, Warm-up period = 10 cycles (10*105 = 1050 seconds)

Results

For the 105 second cycle, Table 5.8-d summarizes results which have the familiar
diagonal pattern. To examine the effect of the number of simulated vehicles when links are longer
(600 feet), the number of vehicles simulated is again reduced from 2000 to 1200. As shown in
Table 5.14, like the 200 foot link case, the overall network crossing time pattern is very similar to
that in Table 5.8-d.

TABLE 5.14: NETWORK CROSSING TIME (SEC) [FOR 1200 VEHICLES, L = 600 FT]

off2 off3 0 15 30 45 60 90

The nurr;ber of vehicles simulated during the warm-up period (10 cycles) is presented in
Table 5.15. As indicated in the table, the number of vehicles processed during warm-up varies
with offset combination much like the network crossing times shown in Table 5.14. As the
efficiency of an arterial system increases, the number of vehicles processed during warm-up

increases.

77

TABLE 5.15: NUMBER OF WARM-UP VEHICLES

off2 off3 0 15 30 45 60 75 90
0 1445 1309 1262 1209 1047 1032 1536
15 1576 1490 1374 1294 1095 1033 959
30 928 1586 1491 1348 1211 1089 974
45 894 959 1378 1300 1189 1111 998
60 964 873 947 1390 1290 1206 1126
75 1097 1002 958 944 1413 1328 1237
90 1339 1195 1110 1087 1012 1512 1402

Table 5.16 summarizes the number of vehicles simulated on each lane when offset 3 is
zero and offset 2 varies from zero to 90 seconds. The number of vehicles simulated on each
arterial lane per 85 second green interval is presented in Table 5.17. The combination of 15
second offset 2 and 0 second offset 3 is most efficient since the maximum 45 vehicles can be
processed on each arterial lane per 85 second green interval. When offset 2 is 30 and offset 3 is
0, network crossing time is maximum and the number of vehicles simulated per arterial lane per
cycle is minimum. As offset 2 increases past 30 seconds, system efficiency increases and the
number of vehicles simulated on the arterial per cycle increases. As in the case of a shorter link,
system efficiency is proportional to the number of vehicles simulated on the arterial per cycle.
Although relational patterns between offsets 2 and 3 are similar for 200 and 600 feet link cases,
the offset 2 magnitude for maximum efficiency, seems to increase with link length. This trend is,
no doubt, related to greater link travel times for 600 versus 200 feet links.

TABLE 5.16: NUMBER OF VEHICLES SIMULATED ON EACH LANE (FIXED OFF3)

offset sim'n lane number
off2 { off3 | perd 1 2 5 6 7 8 9 10
0 0 1533 | 557 : 603 { 140 { 140 : 140 { 140 | 140 i 140
15 0 1375 | 590 ¢ 630 { 130 : 130 : 130 { 130 { 130 i 130
30 0 4722 1 90 112 : 450 0 448 0 450 : 450
45 0 4147 | 197 i 224 i 398 0 : 390 0 396 : 395
60 0 3179 1390 : 396 | 307 0 300 0 305 : 302
75 0 2532 | 504 : 515 : 247 6 240 0 247 : 241
90 0 1750 | 485 { 535 { 162 : 168 : 160 : 160 162 : 168

78

TABLE 5.17: NUMBER OF VEHICLES SIMULATED ON EACH ARTERIAL LANE PER CYCLE

offset (sec) simulation arterial lane
off2 off3 period (sec) right left
0 0 1533 38 38
15 0 1375 45 45

30 0 4722 2 2

45 0 4147 5 5
60 0 3179 13 13
75 0 2532 21 21
90 0 1750 29 29

Case 1. (off2 = 15 and off3 = 0)

For 600 feet link lengths, this offset combination was most efficient, however, moderate
duration queue spillback did occur. Each left lane of the three cross streets was blocked by queue
spillback for 12.5 seconds out of the 20 second cross street green interval. These queue
spillbacks were cleared during the same cross street green. Therefore, both arterial lanes are not
affected by queue spillbacks. Only four vehicles (out of a maximum of ten) from the upsiream link
are processed in each left cross street lane at the second intersection in a cycle throughout the

network crossing time. The other six vehicles turn from the arterial into each cross street.

Case 2. (off2 = 30 and off3 = 0)

This offset combination produces the maximum network crossing time of 4722 seconds.
The left lane of the first and third intersection and the right lane of the second intersection on the
arterial are blocked by queue spillbacks for 2 seconds during the cross street green and 80
seconds during the arterial green throughout the network crossing time. Furthermore, the right
lanes of the first and second cross streets are continuously blocked by arterial queue spiillbacks
during cross street green. Therefore no vehicle can be released in these lanes throughout the

simulation.

5.4.4 Offset and Link Length

The experimental design, featuring reduced condition combinations, permits easy
examination of specific effects of control parameters. To examine the effect of offset on the

network crossing time more closely, a.smaller offset 2 increment, or two seconds, and zero

79

values of offset 1 and offset 3, were used. A two second offset 3 increment and zero values of
offset 1 and offset 2 were also used. To look into the relationship between offset and link length, a
400 foot link case was added.

As shown in Figures 5.17 - 5.20, given one link length, graph shapes are very similar for
all cycle lengths. As discussed before, with the same link length and fixed cross street green,
maximum network crossing time increases as the arterial green increases. In other words, with
worst offsets and fixed cross street greens, delay caused by queue spillback increases as arterial
green increases. "Lost green” per cycle due to queue spillback is likely to increase as the arterial
green interval increases. "Lost green" is defined as a green duration that cannot be used, and is
therefore wasted, due to queue spillback.

As presented in Figures 5.17 and 5.18, when links are 200 feet long and offset 2 is about
10 seconds greater than offset 3, network crossing times are maximum. However simultaneous
green produces minimum network crossing time regardless of the cycle length. This result is

almost identical to that of the experimentation with 200 feet links conducted in subsection 5.4.1.

__ 6000 §

[&]

&] C =60 sec

~ 5000 B

g | —e— (C=75sec

"; 4000 C=90sec |

£ i ety G = 105 sec

3 3000

0 -

x

S 2000 -

2 ,

o e %y

< 1000 T T i . T —
0 15 30 45 60 75 90 105

offset 2 (sec)

Figure 5.17: Offset 2 vs. network crossing time (one-way, L = 200 ft, offset 3 = 0)

80

5 6000 - .
?, 1 —f— C=60sec sos
5 5000 1~ ceecemen oo C= 75 sec ‘:“
£ L
2 4000
[H
S 3000
. 2 9
g 2000 %
@
c Hwe £
1000 +— . . et ———t
0 15 30 45 60 75 90 105

offset 3 (sec)

Figure 5.18: Offset 3 vs. network crossing time (one-way, L = 200 ft, offset 2 = 0)

When links are 600 feet long and offset 2 is about 15 seconds greater than offset 3,
network crossing times are minimum, however when offset 2 is about 35 seconds greater than
offset 3, network crossing times are maximum. This result is also almost identical to that of the

experimentation with 600 foot links conducted in subsection 5.4.1.

6000

5000

4000

3000

2000

network crossing time (sec)

1000

offset 2 (sec)

Figure 5.19: Offset 2 vs. network crossing time (one-way, L = 600 ft, offset 3 = 0)

81

6000
4 —T— C=60sec

> C=75 e
5000 4 e 75 se Foe
| —8— c=90sec & @5@
....... Gresns C =105 sec = o
4000 + = '

network crossing time (sec)

offset 3 (sec)

Figure 5.20: Offset 3 vs. network crossing time (one-way, L = 600 ft, offset 2 = 0)

Desirable and undesirable offset ranges producing minimum or maximum network

crossing times were obtained for each cycle length and each link length as shown in Tables 5.18

and 5.19. The last row of each table indicates the median value for each offset range.

TABLE 5.18: DESIRABLE OFFSET RANGES (ONE-WAY OPERATION)

L (ft) 200 400 600
off 3=0 off2=0 | off 3=0 off2=0 off3=0 off2=0
C (sec) off 2 (sec) off 3 off 2 off 3 off 2 off 3
60 (-6)thru2 : 0 thru 8 NA (-12) thru (-4) | 14 thru 16 ; (-18) thru (-14)
75 (:5)thru2 : Othru12 | 2thru 12 : (-15)thru (-3) | 14 thru 18 i (-17) thru (-13)
90 (-6)thru2 : Othru12 | 2thru 12§ (-12) thru (-2) | 14 thru 18 } (-18) thru (-12)
105 (7)thru2 : Othru10 | 2thru 12 (-11) thru (-8) | 14 thru 16 } (-17) thru (-13)
Med -2 5 7 -8 16 -15

82

TABLE 5.19: UNDESIRABLE OFFSET RANGES (ONE-WAY OPERATION)

L (ft) 200 400 600
off3=0 off2=0 off 3=0 off2=0 off 3=0 off2=0

C (sec) off 2 off 3 off 2 off 3 off 2 off 3

60 14 -6 NA NA 30 thru 34 { (-34) thru (-30)
75 8ihru 14 : (-13) thru (-9) | 22 thru 26 : (-23) thru (-21) | 32thru 38 : (-37) thru (-33)
90 8thru 14 ¢ (-14) thru (-8) | 22 thru 24 : (-24) thru (-22) | 32 thru 38 : (-38) thru (-32)
105 8thru 14 : (-13) thru (-9) | 22 thru 24 : (-25) thru (-21) | 32 thru 38 : (-37) thru (-33)
Med 12 -10 23 -23 34 -34

When links are 200 feet long, all desirable offset ranges include zero. For the 400 foot
link case, network crossing time is minimum when offset 2 is 7 seconds greater than offset 3 and
the 600 foot link best case occurs when offset 2 is 16 seconds greater than offset 3. Therefore,
there exists a relationship among link length, offset and network crossing time. The offset 2 value
producing minimum network crossing time (maximum efficiency) increases about nine seconds
for each 200 feet link length. This change in offset 2, or 9 seconds, is approximately equal to the
travel time of the increased 200 feet distance (200/18.35 = 10.9 seconds).

To maintain maximum efficiency, as link length increases, downstream intersection
greens should begin earlier than that of upstream intersections by an increasing amount. This
offset is defined as the netfwork throughput offset. This finding is quite different from traditional
arterial progression in which upstream intersection greens begin earlier than downstream
intersection greens so that platoons of vehicles can pass downstream intersections without

stopping. This can be defined as the travel time offset.

5.4.5 Green Split and Cycle Length

Within the experimental design green split and cycle length change simultaneously,
therefore easy examination of their individual effects on the performance measure is not
provided. In order to identify the effect of green split and cycle length, either the green spilit or the
cycle length, not both, should be varied. To reduce computational compiexity, the best and worst
offset combinations were used. With a demand of 500 vehicles per hour per lane (vphpl), the
cross street traffic becomes undersaturated as the ge/g ratio (gg: cross street green interval, g:
arterial green interval) increases. For comparison purposes, a heavy cross street traffic demand
(1800 vphpl) was added.

83

For a 200 foot link

Table 5.20 and Figures 5.21 - 5.24 present results of simulation runs, which examine the
effect of green split on network crossing time, when links are 200 feet long. Given a fixed link
length, cross street traffic demand, and offset combination, different cycle lengths produce very
similar relationships between network crossing time and g¢/g ratio. However, the relationships
differ as cross street traffic demand changes.

When the cross street traffic demand is 500 vphpl, an optimum g¢/g ratio, producing
minimum network crossing time, can be identified. When the g¢/g ratio is larger than optimum, the
cross street green is not fully used, but when the g¢/g ratio is smaller than optimum, cross street
traffic demand exceeds capacity. Therefore, system efficiency decreases as the gg/g ratio

increases or decreases past the optimum.

When the cross street traffic demand is very heavy, 1800 vphpl, network crossing time
decreases as the g:/g ratio increases regardless of offset combination. Since the arterial system
consists of two arterial lanes and six cross street lanes, cross streets have more influence on
system efficiency than the arterial. The capacity of cross streets is proportional to the g¢/C ratio

(C: cycle length). With a fixed cycle length, system efficiency increases as the gg/g ratio

increases. Therefore, in oversaturated conditions, sufficiently long cross street green intervals
should be assigned to increase system efficiency and prevent avoidable queue spillbacks.

If cross street traffic demand is moderate, 500 vphpl, and best offsets are applied,
network crossing time changes only slightly with gc/g ratio and cycle length, except when the
cross street green interval is very short. However, system efficiency.rapidly deteriorates when the
cross street green becomes too short, 10 seconds here, for the link length. Therefore, with
moderate cross street traffic demand, a "practical" minimum cross street green interval is
necessary to accommodate through traffic and turning vehicles from the arterial. When the cross
street green is shorter than the minimum, even with the best offset combination, queue spillback
occurs in the cross streets and system efficiency deteriorates. For 200 foot links, the minimum

cross street green interval is 11 seconds .

84

TABLE 5.20: THE EFFECT OF GREEN SPLIT ON THE NETWORK CROSSING TIME (L = 200

FT)
g dc gc/g with best offsets 1) with worst offsets 2)
500 3) 1800 500 1800
a. C =60 sec
25 35 1.40 1426 887 1451 1713
30 30 1.00 1366 994 1529 2258
35 25 0.71 1285 1057 1456 2276
40 20 0.50 1220 1161 2501 2861
45 15 0.33 1340 1340 4003 4003
50 10 0.20 2122 2151
b.C =75 sec -
35 40 1.14 1409 930 1601 1826
40 35 0.88 1337 997 1452 2148
45 30 0.67 1292 1101 2209 2828
50 25 0.50 1238 1158 2687 2848
55 20 0.36 1261 1261 3581 3581
60 15 0.25 1402 1402 5008 5008
65 10 0.15 2176 2228
c.C =90 sec
40 50 1.25 1442 902 1471 1677
45 45 1.00 1410 975 1403 1840
50 40 0.80 1335 1010 1485 2201
55 35 0.64 1288 1075 1321 2583
60 30 0.50 1232 1160 2850 3398
65 25 0.38 1243 1239 3482 3418
70 20 0.29 1336 1336 4301 4301
75 15 0.20 1458 1458 6013 6013
80 10 0.13 2290 2342
d. C = 105 sec
50 55 1.10 1431 931 1607 1727
55 50 0.91 1366 998 1401 1962
60 45 0.75 1335 1036 1328 2155
65 40 0.62 1296 1088 1311 2576
70 35 0.50 1255 1148 2386 3018
75 30 0.40 1245 1238 3324 3968
80 25 0.31 1269 1276 3982 3988
85 20 0.24 1388 1388 5021 5021
90 15 0.17 1508 1506 7018 7018
95 10 0.11 2326 2306

1) offset 1 = offset 2 = offset 3 =0 sec
2) offset 1 = 0 sec, offset 2 = 15 sec, offset 3 = 0 sec

3) hourly cross street traffic demand in vphpl

85

fg 2400 ‘ T T 1
k2 2900 —f— (C=60sec
g i - C=75sec
= 2000 g C=90sec 1
c) -
,,,,,,,,, wgrarenens = 1 C
% 1800 C=105se ™
1 J
8 1600
=< 1 5
o e O R
E 1400
= .
S 1200

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
gc/g ratio

Figure 5.21: The effect of green split on the network crossing time (L = 200 ft, cross street V =
500 vphpl, with best offsets)

S 2500 T T I

:3, 7 -~ C=60sec

g 2000 opoeeeme C=7ssec -

= | - C=90sec

g} o A— C=105$€C

‘s 1500 -1

@ Bk

o 1 d

[&]

x 1000

=5 B

E .

@

c 500 y r r r r—— . .
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

gc/g ratio

Figure 5.22: The effect of green split on the network crossing time (L = 200 ft, cross street V =
1800 vphpl, with best offsets)

86

S 8000 , T ;

;g, 7000] 2 — C =60 sec -

OE> N 300 FEE eesasees peveness C=75 sec

= 6000] Q;%} —a—— C=90sec |

2 5000 % @ C=105sec

=] 3

® 4000

S]

x 3000 T S

2 2000 N s

© 1 - 5

< 1000 . . e , ,5 .

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

gc/g ratio

Figure 5.23: The effect of green split on the network crossing time (L = 200 ft, cross street V =
500 vphpl, with worst offsets)

< 8000 T i]

;8/ 2000 7 ° —— C=60sec .
o J F S S N R PR C =75 sec

E 6000 - % —a— C=90sec |
g‘) 5000] % ,,,,,,,,, - C = 105 sec

g 4000

& 3000 7 s

g 2000 D o e e — =

2 1000 4+— - - - —T— \?

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
gc/g ratio

Figure 5.24: The efiect of green spilit on the network crossing time (L = 200 ft, cross street V =
1800 vphpl, with worst offsets)

Figures 5.25 and 5.26 show the effect of cycle length on network crossing time with the

best and worst offset combinations respectively when links are 200 feet long. As explained
previously, network crossing time increases as the g¢/g ratio decreases. When the g¢/g ratio is

1:3 or 1:4, the cross street traffic demand exceeds the capacity whether it is 500 vphpl or 1800

87

vphpl. Therefore, in Figures 5.25 and 5.26, series 3 and 4 are almost identical and at a different
demand level series 5 and 6 are also nearly identical.

When the g¢/g ratio is 1:2 and the demand is 500 vphpl, the cross street is not saturated.
Since the cross street green is not fully used, when the best offsets were applied, this case is less
efficient than the one with the demand at 1800 vphpl as shown by series 1 and 2 in Figure 5.25.
When the worst offsets were applied, the case with 500 vphpl demand is more efficient than the
one with 1800 vphpl demand as shown by series 1 and 2 in Figure 5.26. This is because the
delay resulting from queue spillbacks caused by wrong offsets has more effect on the network

crossing time than the under utilized green time.

1600
s ¢ o] 1)1 :2_.1 800 & 4)1 :3_500

1500 d— T 2)1:2_500 g 5)1:4_1800
——— 3)1:3.1800 - e 6)1:4_500

network corssing time (sec)

60 80 100 120
cycle length (sec)

* Cross street to arterial street green ratio (ge¢:g) _. Cross street traffic demand (vphpl)

Figure 5.25: The effect of cycle length on the network crossing time (L = 200 ft, with best offsets)

88

network corssing time (sec)

] —o— 1)1:2_1800 . 4)1:3_500
1000 - " RS 2)1 :22_500 e 5)1 :4_1800 _—
{ —— 3)1:3_1800 - o 6)1:4_500
0 . . . , :
60 80 100 120

cycle length (sec)
* Cross street to arterial street green ratio (ge:g) _ Cross street traffic demand (vphpl)

Figure 5.26: The effect of cycle length on the network crossing time (L = 200 ft, with worst offsets)

For a 600 foot link

Table 5.21 and Figures 5.27 - 5.30 show the effect of green split on network crossing
time, when links are 600 feet long. In general, results are almost identical to those of the 200 foot
link case. With the same link length, cross street traffic demand, and offset combinations, the
relationships between the network crossing time and g¢/g ratio are very similar regardless of
cycle length. However, the relationships are different at different cross street traffic demand
levels.

As in the 200 foot link case, when the cross street traffic demand is 500 vphpl, each cycle
length seems to have an optimum g¢/g ratio. When the cross street traffic demand is 1800 vphpl,

the network crossing time decreases as the g¢/g ratio increases regardless of the offset
combinations.

With the best offsets, network crossing time changes little as the gg/g ratio changes,
irrespective of cycle length, except when the cross street green interval decreases to 14 seconds
causing significant system efficiency deterioration. The practical minimum green intervai for cross
streets is 15 seconds for the 600 foot link, which is 4 seconds longer than that for the 200 foot link
case. The difference can be mainly attributed to the link length difference and the difference in the
number of turning vehicles from arterial to cross streets (6 for a 600 foot link and 2 for a 200 foot
link).

89

TABLE 5.21: THE EFFECT OF GREEN SPLIT ON THE NETWORK CROSSING TIME (L = 600

FT)
g dc dc/9 with best offsets 1) with worst offsets 2)
500 3) 1800 500 1800
a. C =60 sec
25 35 1.40 1276 984 1286 1435
30 30 1.00 1224 1059 1262 1688
35 25 0.71 1209 1102 1577 1861
40 20 0.50 1245 1219 2464 2461
45 15 0.33 1452 1452 3328 3389
46 14 0.30 2348 2350
b.C=75sec
35 40 1.14 1241 952 1295 1614
40 35 0.88 1180 1025 1229 1768
45 30 0.67 1227 1097 1622 2007
50 25 0.50 1195 1129 2093 2207
55 20 0.36 1268 1268 2956 2956
60 15 0.25 1911 1911 3861 3861
61 14 0.23 3063 3754
c.C =90 sec
40 50 1.25 1298 927 1285 1624
45 45 1.00 1258 969 1268 1822
50 40 0.80 1216 1000 1203 2097
55 35 0.64 1159 1060 1202 2252
60 30 0.50 1217 1145 2293 2652
65 25 0.38 1226 1221 2755 2749
70 20 0.29 1325 1325 4052 4052
75 15 0.20 1501 1501 5187 5569
76 14 0.18 3700 3704
d. C =105 sec
50 55 1.10 1305 916 1294 1885
55 50 0.91 1261 985 1262 2056
60 45 0.75 1214 1024 1201 2098
65 40 0.62 1209 1077 1192 2353
70 35 0.50 1212 1133 2359 2774
75 30 0.40 1232 1333 3152 3250
80 25 0.31 1257 1256 3337 3337
85 20 0.24 1375 1375 4722 4722
90 15 0.17 1546 1546 6049 6049
91 14 0.15 4317 4321

1) offset 1 = 0 sec, offset 2 = 15 sec, offset 3 = 0 sec
2) offset 1 = 0 sec, offset 2 = 30 sec, offset 3 =0 sec

3) hourfy cross street traffic demand in vphpl

90

5000 ; . ,

4000 ’.‘:; -.. C — 75 SeC -

3000

2000

network corssing time (sec)

1000 T T T ' T T ' T
0.0 0.2 04 0.6 0.8 1.0 1.2 1.4 1.6

gc/g ratio

Figure 5.27: The effect of green split on the network crossing time (L = 600 ft, cross street V =
500 vphpl, with best offsets)

5000 : r T
:Do\ . o —f&— C=60sec
£ 4000 % * C=75sec
‘g . ?{ ——— C =90 sec
"; 3000 \ P C = 105 sec
s - S
3 2000 N
Q J
[&]
X 1000
<)
g |
g 0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
gc/g ratio

Figure 5.28: The effect of green split on the network crossing time (L = 600 ft, cross street V =
1800 vphpl, with best offsets)

91

< 7000
Q 4
L
o 6000
E
= 5000
[o]
c
@ 4000
&
o
© 3000
=
g 2000
©
< 1000

7 T 1
X ——fF— =60 sec
- IR R R R PO C=75sec
g (C=90sec
E I T W S S S prrenren C =105 sec N
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

gc/g ratio

Figure 5.29: The effect of green split on the network crossing time (L = 600 ft, cross street V =

7000

6000

5000

4000

3000

2000

network corssing time (sec)

1000

500 vphpl, with worst offsets)

H 3 H
1 n —— C=60sec
| ‘% ' C=75$ec
B— (C=90sec
19 F % oy E e Q C=105$ec
1 s
y » . r — . .i '
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

gc/g ratio

Figure 5.30: The effect of green split on the network crossing time (L = 600 ft, cross street V =

1800 vphpl, with worst offsets)

Figures 5.31 and 5.32 show the effect of cycle length on network crossing time with the

best and worst offset combinations respectively when links are 600 feet long. In general, pattemns

are similar to those of the 200 foot link case. Network crossing time varies only slightly as the

cycle length changes unless the green interval is too short. As shown in Figure 5.31 (see the

92

shortest cycle length cases of series 5 - 6), critically short cross street greens (15 seconds) for
the link length (600 feet) produces much longer network crossing times. When the g¢/g ratio is

1:3 or 1:4, the cross street traffic demand exceeds the capacity whether it is 500 vphpt or 1800

vphpl. Series 3 and 4 as well as series 5 and 6 in Figures 5.31 and 5.32 are almost identical

patterns but at different demand levels.

2500

2000 -+

———
......... L ST
—-——g_—-—-

1)1:2_1800*
2)1:2_500
3)1:3_1800

1500 3

network corssing time (sec)

......... :%....w-

ity

--------- *(lv--.tv

4)1:3_500
)1:4_1800
6)1:4_500

1000

80

100

cycle length (sec)

* Cross street to arterial street green ratio (gg:g) _ Cross street traffic demand (vphpl)

Figure 5.31: The effect of cycle length on the network crossing time (L = 600 ft, with best offsets)

__ 5000
Q
[0
L

4000
(O]
o 3000
£
[7]
(2]
b 2000
(]
x 1 —o— 11:2_1800* - e 4)1:3_500
g 1000 4~ oo e 2)1 :2_500 e 5)1 :4_1 800 b
© 1 —o— 23)1:3.1800 - 6)1:4_500

0 t 1 r
60 80 100 120

cycle length (sec)

* Cross street to arterial street green ratio (gg:g) __ Cross street traffic demand (vphpl)

Figure 5.32: The effect of cycle length on the network crossing time (L = 600 ft, with worst offsets)

93

5.4.6 Formulation of Relationships

In the previous subsections, the effect of offset, link length, green split and interval, and
cycle length, on the main performance measure, network crossing time, was examined. Each
analysis on each input parameter, however, does not show the overall refationship between traffic
control parameters and the response variable. Multiple regression analysis was used to draw a
relationship between these parameters and network crossing time. Tables 5.7 and 5.8 were used
as data for the multiple regression. Results of regression analysis were summarized in Table
5.22.

The following regression equation was proposed:

NCT =b4 + bo C+ b3 GCR + bg OFFD (5.11)
where,

NCT = network crossing time (sec)

C = cycle length (sec)

GCR = g¢/g (:green ratio, g¢ = cross street green, ¢ = arterial green)

OFFD = off3 - off2 (if OFFD < 0, OFFD = OFFD + C)

The t-statistic for the coefficient of the OFFD is 20.83, which would be more than enough to reject
the null hypothesis b4 = 0 at conventional significance levels (i tgble = 1.98 at 0.05 level). The
coefficients of C and GCR, however, do not achieve significance at the 0.05 level (t-statistics are -
0.64 and -0.74, respectively), that is, they are not significantly different from zero. The estimated t
values were computed under the null hypothesis that the true population value of each regression
coefficient is zero. Therefore, only the estimated regression coefficient of OFFD is statistically
significant.

For the 600 foot link case, a different definition of the variable OFFD was used as follows:

OFFD = off3 - off2 + 15 (if OFFD < 0, OFFD = OFFD + C,

if OFFD = C, OFFD = OFFD - C) (5.12)
The t-statistic for the coefficient of this OFFD is 34.03, which is again more than enough to reject
the null hypothesis b4 = 0 at conventional significance levels. As in the 200 foot link case, the
coefficients of C and GCR are not significant at the 0.05 level (i-statistics are 0.87 and 0.61,

respectively). Only the estimated regression coefficient of OFFD is statisticaily significant.

94

TABLE 5.22: RESULTS OF MULTIPLE REGRESSION ANALYSES

1.L=200ft

Dependent variable: network crossing time
Number of observations 126

R 0.8928

R-spuared 0.7971

Adjusted R-spuared 0.7921

Standard error of estimate 441.76

Intercept 2132.92

Independent Estimated Standard 1-
Variable Coefficient Error Statistic
C - 6.80 10.624 - 0.640
GCR -1433.12 1926.453 - 0.744
QFFD 31.85 1.529 20.834
g-ratio = g¢/g dc = cross street green

g = arterial green

OFFD = off3 - off2

if OFFD <0, OFFD =OFFD + C

2.L =600ft

Dependent variable:

network crossing time

Number of observations 126

R 0.9559

R-spuared 0.9137

Adjusted R-spuared 0.9116

Standard error of estimate 299.85

Intercept 231.296

Independent Estimated Standard t-
Variable Coefficient Error Statistic
C 6.30 7.211 0.874
GCR 791.07 1307.587 0.605
QFFD 35.31 1.038 34.028

OFFD = off3 - off2 + 15

if OFFD < 0, OFFD = OFFD + C

it OFFD > C, OFFD = OFFD - C

Since OFFD was the only statistically significant traffic control parameter for both cases,
a curve fitting method instead of multiple regression analysis was used to draw a relationship
between OFFD and network crossing time. As shown in Figures 5.33 and 5.34, the plotted data
appear to have a relationship other than linear. Results indicate that second order equations fit
the plotted data better than linear equations for both cases. The equations obtained by this

method are as follows:

For a 200 foot link,
y = 1478.2 - 3.752x1 + 0.442x12 (R2 = 0.902) (5.13)

95

For a 600 foot link,
y=1322.1 + 8.790x2 + 0.332x22 (R2 = 0.968) (5.14)

where

y = network crossing time
X1 = offset 3 - offset 2, for a 200 foot link

(if X1 <0,x1 =x1 +C)
x2 = offset 3 - offset 2 + 15, for a 600 foot link
(fx2<0,x2=x2+C, ifx22C,xp=x2-C)

Figures 5.33 and 5.34 present resuits of the curve fitting and scattergrams that show the
relationship between the network crossing time and OFFD when links are 200 and 600 feet long,

respectively.

@ 6000 T T T T T T T 7 T

£ y = 1478.2 - 3.7517x + 0.44204x"2 RA2 = 0.902

~ 5000

()]

£ %

T 4000

W

2 3000 < ¥

5 2000 1— /ﬁ74/ !

= .————l— X OFFD = off3 - off2

2 1000 4 —

0 20 40 60 80 100

OFFD (sec)

Figure 5.33: Relationship between simlation time and OFFD (L =200 ft)

96

SO0 17T T

1 X OFFD=off3-off2 + 15 /{
4000 /}/

3000 - /!/ .
2000 - r—éil/
._/’I’

1 y = 13221 + 8.7898x + 0.33231x"2 RA2 = 0.968
o——

0 20 40 60 80 100
OFFD (sec)

1000

network crossing time (time)

Figure 5.34: Relationship between simlation time and OFFD (L = 600 ft)

5.5 TWO-WAY ARTERIAL OPERATION

As shown in Figure 5.35, a two-way two-lane arterial consisting of three intersections with
one-way two-lane cross streets is considered in this analysis. A center lane in the arterial is
considered only when a protected left-turn phase on the arterial is included in a signal timing plan.
A common traffic signal cycle length along the arterial and two- and three-phase operations are
applied. For two-phase operation, a left-turn phase on the arterial is precluded. Three-phase

operation includes an arterial protected left-turn phase.

5.5.1 Experimentation with Two-Phase Operation

With the experimental design derived in section 5.2, two-way and two-phase operation
experimentation was conducted first. As in the one-way operation experimentation, two different
link lengths (200 and 600 feet) and four different cycle lengths (60, 75, 90, and 105 seconds)
were used. A system performance measure was the time required to process 2000 vehicles
through the arterial system consisting of four arterial lanes and six cross street lanes.

Tables 5.23 and 5.24 summarize results of two-way and two-phase operation when links
are 200 feet and 600 feet long respectively. For the same reason as in the one-way operation
experimentation, 20 percent for turning movements into cross streets and 10 percent for turning
movements into the arterial were used. Each table shows results of 126 simulation runs and the

total design points are 252.

97

Arterial | 5 | |
3 |4 TIT direction A
4ill i
-« 1o << —
4-| T T 3rd cross street

2nd cross street I T T,

S - ?; - <i": — —_
<+ 5 < v
! <-.l T ! T 1st cross street
| I
direction B)
l Il 2 i 1 |Arterial

Figure 5.35: Arterial two-way operational configuration

98

With the two-way and two-phase operation, the difference between minimum and
maximum network crossing times for each link length and cycle length is much smaller than that
of one-way operation. This is because two more lanes (lanes 3 and 4, see Figure 5.35) are added
to the arterial (in direction B) and a protected lefi-turn phase on the anerial is precluded.
Precluding a left-turn on the arterial considerably reduces queue spillback possibility in each
cross street left lane (lanes 5, 7, and 9), which in turn, enables arterial lanes 1 and 4 to
accommodate more vehicles. Furthermore, traffic in arterial lanes 2 and 3 is uninterrupted by
gueue spillbacks from cross streets.

For a 200 foot link, the simultaneous green (zero offsets) produces minimum network
crossing time irrespective of cycle length. This is identical to the one-way operation result. As
absolute values of offsets 2 and 3 decrease to zero simultaneously, the network crossing time
decreases. On the other hand, the network crossing time increases as absolute values of offsets
2 and 3 increase simultaneously.

Resuits for a 600 foot link are also different from the one-way operation results. As shown
in Table 5.24, differences between minimum and maximum network crossing times is very small
regardless of the cycle length, and compared to the 200 foot link case, differences between
minimum and maximum network crossing times is smaller. As in the 200 foot link case, network

crossing times decrease as absolute values of offsets 2 and 3 decrease simultaneously.

99

TABLE 5.23: NETWORK CROSSING TIME (SEC) [TWO-WAY, TWO-PHASE, L = 200 FT]

off3 0 15 30 45 60 75 90

off2 a. C =60 sec. (g =40, r=20)
0 897 974 1283 987
15 1095 989 1054 1180
30 1214 1210 1322 1306
45 1053 1274 1052 974

b. C =75 sec. (g =55, r =20)
0 856 915 1092 1154 910
15 1020 915 983 1140 1077
30 1085 1077 1154 1144 1079
45 1079 1079 1141 1092 1147
60 983 1147 1144 990 913

c.C=90sec.(g=70,r=20
0 870 908 1102 1050 1101 909
15 950 908 962 1137 1095 1042
30 1096 1042 1101 1103 1224 1048
45 1067 1048 1096 1050 1103 1050
60 1058 1051 1219 1140 1049 1095
75 945 1095 1103 1103 967 904

d. C =105 sec. (g = 85, r = 20)
0 879 911 1032 1074 1025 1057 912
15 977 911 953 1105 1110 1075 1003
30 1002 1003 1057 1069 1264 1176 1042
45 1060 1042 1075 1025 1081 1122 1042
60 1052 : 1042 1176 1116 1027 1077 1017
75 1013 1017 1109 1258 1110 1032 1067
90 955 1067 1075 1081 1069 962 915

100

TABLE 5.24: NETWORK CROSSING TIME (SEC) [TWO-WAY, TWO-PHASE, L = 600 FT]

off3 0 15 30 45 60 75 90

off2 a. C =60 sec. (g =40, r = 20)
0 894 912 997 919
15 938 919 934 1033
30 981 917 936 963
45 930 979 912 894

b. C =75 sec. (9 =55, r=20)
0 855 846 918 932 855
15 857 855 848 919 932
30 941 872 875 868 940
45 916 918 887 848 890
60 839 { 913 925 848 846

c. C=90sec. (g=70, r=20)
0 871 864 902 925 910 870
15 869 869 864 902 925 910
30 860 864 902 902 932 925
45 952 932 910 932 926 967
60 902 960 941 860 860 851
75 855 902 918 907 864 864

d. C =105 sec. (g = 85, r = 20)
0 880 869 903 920 737 909 879
15 880 879 870 903 916 916 909
30 878 880 890 900 923 909 908
45 932 909 916 921 907 957 947
60 932 947 909 914 920 922 937
75 890 959 907 947 869 868 863
90 - 861 894 943 907 905 870 870

101

5.5.2 Offset and Link Length (Two-Phase Operation)

As in the one-way operation experimentation, to examine the effect of offset on network
crossing time more closely, a smaller offset 2 increment, or two seconds, and zero values of
offsets 1 and 3, were used. A two second offset 3 increment and zero values of offsets 1 and 2
were also used and a 400 feet link case was added.

As shown in Figures 5.36 - 5.39, with the same link length, the overall shape of each
graph is very similar regardless of the cycle length. With the 200 feet link, network crossing times
reach the minimum value, as absolute values of offsets 2 and 3 approach zero simulianeously
and it increases as absolute values of offsets 2 and 3 increase simultaneously.

When links are 600 feet long, the overall shapes of the graphs are different from those of
the 200 foot link cases. The maximum network crossing time for each cycle length is shorter and

the offset range producing minimum network crossing time for each cycle is much wider.

= 1400

8 | —a— C=60sec
;’ 1300 e G =75sec
E 1200 nng,_qnn“ e G = 90 SEC
g) J 5 o ...' ofgpenevare C = 105 Sec
2 .

o

[&]

=<

o

2

[6})

oy

—— x r
0 15 30 45 60 75 90 105
offset 2 (sec)

Figure 5.36: Offset 2 vs. network crossing time (two-way, two-phase, L = 200 ft, offset 3 = 0)

102

1400

1 —8— C=60sec
1300 | F e G =75 s€C
1200 o g G =90 sec

,,,,,,,,, o evasuns C = 105 sec

1100

network corssing time (sec)

0 15 30 45 60 75 90 105
offset 3 (sec)

Figure 5.37: Offset 3 vs. network crossing time (two-way, two-phase, L = 200 ft, offset 2 = 0)

network corssing time (sec)

0 i5 30 45 60 75 90 105
offset 2 (sec)

Figure 5.38: Offset 2 vs. network crossing time (two-way, two-phase, L = 600 ft, offset 3 = 0)

103

network corssing time (sec)

0 15 30 45 60 75 90 105
offset 3 (sec)

Figure 5.39: Offset 3 vs. network crossing time (two-way, two-phase, L = 600 ft, offset 2 = 0)

For the two-way and two-phase operation, Tables 5.25 and 5.26 summarize desirabie
and undesirable offset ranges respectively. The last row of Table 5.25 indicates the median
desirable offset range value. The desirable offset range for each link length includes zero
regardless of the cycle length. This result is quite different from one-way operation except when
links are 200 feet long. Desirable offset ranges change with link length but not cycle length and
undesirable offset ranges change with cycle length but not link length.

TABLE 5.25: DESIRABLE OFFSET RANGES (TWO-WAY AND TWO-PHASE OPERATION)

L (ft) 200 400 600
off3=0 : off2=0 off3=0 off2=0 off3=0 off2=0

C (sec) off 2 off 3 off 2 off 3 off 2 off 3
60 (-8)thru 8 : (-6) thru 8 | (-18) thru 18 i (-12) thru 18 | (-10) thru 10 (-10) thru 10
75 (-5) thru 6 : (-5) thru 8 | (-12) thru 18 i (-12) thru 18 (-29) thru 28 : (-29) thru 28
90 (:6)thru 6 : (-2) thru 8 | (-14) thru 18 } (-16) thru 18 | (-28) thru 34 { (-26) thru 28
105 (:5) thru 6 : (-5) thru 8 | (-16) thru 18 { (-15) thru 20 | (-29) thru 36 | (-27) thru 28 °
Med 0 2 2 2 2 0

104

TABLE 5.26: UNDESIRABLE OFFSET RANGES (TWO-WAY AND TWO-PHASE OPERATION)

L (ft) 200 400 600
off 3=0 off2=0 off 3=0 off2=0 off 3=0 off2=0
C (sec) off 2 off 3 off 2 off 3 off 2 off 3
60 20thru 38 : 221thru44 | 20thru40 i 22thru36 | 18thru30 : 24 thru 36
75 24thru54 : 26thru52 | 32thru52 i 30thru48 | 30thru44 : 30thru 44
90 26thru64 : 26thru66 | 34thru62 : 34 thru56 | 36 thru 60 i 30 thru 62
105 32thru80 : 26thru78 | 34thru74 i 36thru68 | 38thru74 i 30 thru 76

5.5.3 Experimentation with Three-Phase Operation

Tables 5.27 and 5.28 summarize results of two-way and three-phase operation when
links are 200 feet and 600 feet long respectively. For the same reason as in the one-way
operation experimentation, 20 percent turning movements into cross streets and 10 percent
turning movements into the arterial were used. Each table shows results of 126 simulation runs
and the total design points are 252.

As shown in Tables 5.27 and 5.28, the result is quite different from the two-way and two-
phase operation. Even though minimum network crossing times in both three-phase and two-
phase operation are similar, maximum network crossing times for three-phase cycle lengths are
much longer than two-phase. This is due primarily to the added arterial left-turn phase leading to
a considerable increase in queue spillback possibility in each cross street left lane where turning
movements from the arterial arrive. Therefore, arterial lanes 1 and 4 are more likely to be blocked
by queue spillbacks from cross street lanes 5, 7, and 9 especially when poor offset combinations
are applied.

As in the case of one-way operation, for a given link iength, the overall pattern of results
is very similar regardless of the cycle length. In most cases, particular patterns of maximum or
minimum network crossing times, are formed along diagonals [see the shaded cells or adjacent
cells in Tables 5.27 and 5.28]. Only the magnitude of the network crossing times, not the pattern,
changes with cycle iength.

For a 200 foot link, simultaneous greens produce minimum network crossing times
regardiess of the cycle length. This is identical to the two-way two-phase operation result. When
offset 2 is 15 seconds greater than offset 3, network crossing times are maximum (see the

shaded cells in the Table 5.27) except when the cycle length is 80 seconds. With few exceptions

105

when offset 2 equals offset 3, network crossing time is minimum. Figures 5.40 - 5.43 present
results of simulation runs when links are 200 feet long (same as Table 5.27)

When links are 600 feet long, results are different than one-way operation. First, offset
ranges producing minimum network crossing times are wider, and, second, compared with Table
5.8, the shaded celis of Table 5.28, indicating maximum network crossing times, are shifted
downward 15 seconds.

When offset 2 is 45 seconds greater than offset 3, network crossing times are maximum
indicating lowest efficiency and when offset 2 is 15 to 30 seconds greater than offset 3, network
crossing times are minimum. Figures 5.44 - 5.47 illustrate results of simulation runs when links

are 600 feet long (same as Table 5.28).

106

TABLE 5.27: NETWORK CROSSING TIME (SEC) [TWO-WAY, THREE-PHASE, L = 200 FT.]

off3 0 15 30 45 60 75 90
ofi2 a.C=60sec.(g=35,1=5, r=20)
0 868 910 1099 1321
15 904 886 932 1002
30 1033 1034 1028 1099
45 993 1082 940 946
b.C=75sec. (g=50,1=5, r=20)

c.C=90sec.(g=65,1=5,r=20)

A 870 909 i 1188 i 1332

LT 1137 i 1231 i 1453
30 1524 1216 | 1279
45 1373 1211
60 1225 i 1340 1090
75 959 § 1197 i 1319 928

d.C=105sec. (g=80,1=5, r=20)
927

107

offset 2 (sec)

W
o

Figure 5.40: Network crossing time (sec) [two-way, three-phase, L = 200 ft, C = 60 sec]

offset 2 (sec)

Figure 5.41: Network crossing time (sec) [two-way, three-phase, L = 200 ft, C = 75 sec]

15

(8%}
o

45

15 30
offset 3 (sec)

15 30
offset 3 (sec)

108

45

60

1200

1100

1000

900

800

2250
2000
1750
1500
1250

1600
750

15 2250
_ 2000
23
Nz 1750
™~
g 4 1500
°

1250

60

1000

75 750

offset 3 (sec)

Figure 5.42: Network crossing time (sec) [two-way, three-phase, L = 200 ft, C = 90 sec]

offset 2 (sec)

15 30 45 60 75
offset 3 (sec)

Figure 5.43: Network crossing time (sec) [two-way, three-phase, L = 200 ft, C = 105 sec}

109

TABLE 5.28: NETWORK CROSSING TIME (SEC) [TWO-WAY, THREE-PHASE, L = 600 FT]

off3 0

15

30

45 60

75

90

off2 a.C=60sec. (g=27,1=13, r=20)

803

821

=13, r = 20)

979 1039
882 991 987
834 829 923

c.C=90sec.(g=57,1=13 r=20)

0 | 915 i 971 i 1083
15

.

A5
60
75 991 | 1110 862 i 841 936

d.C=105sec. (g=72,1=13, r = 20)

0 916 i 985 i 1061 i 1139
15 855 i 901 i 986 ! 1062

30 881 © 850 | 899 | 955

45 o7 | 881 . 933 : 1058 i 1157.) 1253
60 1188 966 i 881 i 988 i 1075 : 1152
75 1159 i 1157 933 i 907 i 975 i 1056
90 982 i 1049 i 1192 955 : 851 i 909

110

0
1500
~ 15
Q
3 1250
[a\]
2
o
S 30
1000
45
750

offset 3 (sec)

Figure 5.44: Network crossing time (sec) [two-way, three-phase, L = 600 ft, C = 60 sec]

1750

= 1500
2
~

3 1250
&
o]

1000

| 750

0 15 30 45 60

offset 3 (sec)

Figure 5.45: Network crossing time (sec) [two-way, three-phase, L = 600 ft, C = 75 sec]

111

0
1750

15
9 30 1500
~
é;,’ 45 1250
@)

60 1000

75 750

offset 3 (sec)

Figure 5.46: Network crossing time (sec) [two-way, three-phase, L = 600 ft, C = 90 sec]

0
2000
15
1750
5530
5545 1500
2
Cofusaf
S 60 1250
75 1000
90 |
0 15 30 45 60 75 750
offset 3 (set)

Figure 5.47: Network crossing time (sec) [two-way, three-phase, L = 600 ft, C = 105 sec]

112

5.5.4 Offset and Link Length (Three-Phase Operation)

The same procedure used in the two-way and two-phase operation, was applied tc
examine the offset effect on network crossing time more closely. As shown in the Figures 5.48 -
5.51, given any link length, overall graph shapes are similar. As discussed before, maximum
network crossing times are much longer than those of two-way and two-phase operation.

As presented in Figures 5.48 and 5.49, when links are 200 feet long and offset 2 is about
10 seconds greater than offset 3, network crossing times are maximum. As in the two-way and
two-phase case, with 200 foot links, network crossing times reach minimums, as absolute values
of offsets 2 and 3 approach zero simultaneously.

When links are 600 feet long and offset 2 is about 24 seconds greater than offset 3,
network crossing times are minimum. When offset 2 is about 41 seconds greater than offset 3,
network crossing times are maximum. The desirable offset range producing minimum network

crossing time, for each cycle length, is wider than that of the 200 foot link case.

= 2000 g ’ ’

9 4 - C=60sec

o 1800 | B R R B oo C = 75 sec

E 1600 ‘: ——8— =090 sec

_g z! b C=105sec

@ 1400

S

° 1200

x

O

2 1000 4 2

e o 900,
800 + —— . —]

0 15 30 45 60 75 90 105
offset 2 (sec)

Figure 5.48: Offset 2 vs. network crossing time (iwo-way, three-phase, L = 200 ft, offset 3 = 0)

113

network corssing time (sec)

t ! T i T B
0 15 30 45 60 75 90 105
offset 3 (sec)

Figure 5.49: Offset 3 vs. network crossing time (two-way, three-phase, L. = 200 ft, offset 2 = 0)

- 2000
g 4
& 1800
-]
£ 1600
-]
£ 1400
w
2 -
8 1200
- l
g 1000
[«}]
= 800 ; —

45 60 75 90 105
offset 2 (sec)

Figure 5.50: Offset 2 vs. network crossing time (two-way, three-phase, L = 600 ft, offset 3 = 0)

114

!
C =60sec
C=75sec
C =90 sec
C =105 sec

i34 mn@@ &b

network corssing time (sec)

L)
45
offset 2 (sec)

C 15 60 75 90 105

Figure 5.51: Offset 3 vs. network crossing time (two-way, three-phase, L = 600 ft, offset 2 = 0)

For the two-way and three-phase operation, Tables 29 and 30 summarize desirable and
undesirable offset ranges and the last row of each table indicates median values. As in the
previous cases, when links are 200 feet long, all desirable offset ranges include zero. The
magnitudes of desirable offset ranges increase with link length but seem unrelated to cycle
length. For the 400 feet link case, network crossing time is minimum when offset 2 is 9 seconds
greater than offset 3, however, when links are 600 feet long, network crossing time is minimum

when offset 2 is about 15 seconds greater than offset 3.

TABLE 5.29: DESIRABLE OFFSET RANGES (TWO-WAY ARTERIAL AND THREE-PHASE

SIGNAL OPERATION)
L (ft) 200 400 600
off 3=0 off2=0 off 3=0 off 2=0 off 3=0 off2=0

C (sec) off 2 off 3 off 2 off 3 off 2 off 3

60 (-2) thru 12 ; (-10) thru 10 | (-2) thru 18: (-18) thru 0] (-4) thru 30: (-34)thru 0
75 (-5)thru 6 ¢ (-7)thru 10 | (-1) thru 18: (-19) thru 0] 4 thru 30 : (-25) thru (-1)
90 (-2)thru 6 : (-6)thru10 | Othru18 { (-18)thru0| 4thru26 : (-30) thru (-4)
105 (-8)thru 6 § (-7) thru12 | (-1) thru 18§ (-19) thru 0| 4 thru26 (-29) thru (-5)
Med 2 2 9 -9 15 -16

115

TABLE 5.30: UNDESIRABLE OFFSET RANGES (TWO-WAY ARTERIAL AND THREE-PHASE

SIGNAL OPERATION)
L (ft) 200 400 600
off3=0 off 2=0 off 3=0 off2=0 off 3=0 off2=0

C (sec) off 2 off 3 off 2 off 3 off 2 off 3

60 NA NA 24 thru 34 : (-34) thru (-24) | 36 thru 48 : (-48) thru (-36)
75 14 -13 24 thru 32§ (-31) thru (-25) | 36 thru 48 : (-49) thru (-35)
90 14 (-34) thru (-20) | 24 thru 34 ; (-32) thru (-24) | 36 thru 48 (-46) thru (-36)
105 20 thru 36 (-17) thru (-13) | 24 thru 34 : (-29) thru (-25) | 36 thru 48 (-49) thru (-35)
Med NA NA 29 -28 42 -42

5.6 SUMMARY

This chapter discussed the experimental design, simulation experiments, and analysis of
experimentation results. Introducing variability to parameters (departure headway, vehicle space
in the queue, and vehicle speed) was described. Departure headways were based on the results
of Efstathiadis’ study (1992). Vehicle space uniformity was assumed throughout the simulation
without loss of generality. Field data were collected to provide the simulation model with
appropriate distributions of average overall speeds.

Oversaturated one-way street operations were examined first. To simplify the analysis,
emphasis was placed on one-way arterial street operation. Offset was the dominant factor
affecting system performance; although, link length was also important. When the link length was
short, the optimum offset was approximately zero, irrespective of the cycle length. As the link
length increases, downstream intersection green signal indications should begin before upstream
greens creating downstream storage space for coming platoons. This is due to the longer queues
possible with longer links which require more time to move the last queued vehicle before
oncoming platoon arrival.

With the best offsets, the arterial green duration has little effect on the results, however,
an inadequate cross street green interval is potentially damaging. System efficiency rapidly
deteriorates when a cross street green is too short for a link length causing cross street queue
spillback across the arterial. Therefore, a "practical® minimum cross street green interval is

necessary.

116

When the best arterial offsets are not used, delay caused by arterial queue spillback
increases as the arterial green interval increases. This is because “lost green" per cycle due to
queue spillback increases as the arterial green interval increases.

When the cross street traffic demand is moderate to light (500 vehicles per hour per
lane), an optimum g¢/g ratio exists. Therefore, the system efficiency decreases as the ge/g ratio
increases or decreases past the optimum. However, when the cross street traffic demand is
heavy (1800 vehicles per hour per lane), no optimum g¢/g ratio exists because cross streets are

oversaturated regardless of the g¢/g ratio. System efficiency increases as the g¢/g ratio increases

regardiess of offset combination.

Multiple regression analysis was used to derive a relationship between traffic control
parameters and the response variable. For all cases, the coefficients of C (cycle length) and GCR
(green ratio) did not achieve significance at the 0.05 level. Only the estimated regression
coefficients of OFFD (offset difference) were statistically significant. This result is identical to the
previous result in that offset is the dominant factor affecting system performance.

The two-way, three-phase operation, with short 200 feet links, produced almost the same
results as one-way operation in which simultaneous greens produced minimum network crossing
time regardiess of cycle length. However, with long 600 foot links, results differ from one-way
operation in that the offset range producing minimum network crossing times was much wider.
Compared to two-way, two-phase operation with similar cycle length, maximum network crossing
times for three-phase cases are much longer . This is due to the increased number of phases,
resulting lost time, and the possibility that vehicles using the protected arterial left turn, from the

arterial to the cross street, will spillback blocking the arterial.

117

118

CHAPTER 6 CONCLUSIONS

6.1 SUMMARY AND CONCLUSIONS

Many studies have been performed and applied successfully for the control of
undersaturated traffic, but most of them have been ineffective or invalid in oversaturated
conditions. There has been relatively limited research in the area of traffic control for
oversaturated environments, and most of the research has been too theoretical to be applied in a
real system. A number of traffic optimization models such as TRANSYT-7F and PASSER-II can
develop optimal signal timing plans for undersaturated arterial networks, but none of these are
applicable for oversaturated conditions.

In this study, a traffic simulation model was developed to provide a methodology for traffic
signal timing in oversaturated urban arterial networks. Two control objectives of traffic signal
timing in oversaturated conditions were taken into consideration. One was to maximize the
throughput, or the number of vehicles processed during a given time period. The other was to
prevent queue spillback or to minimize the occurrence of queue spillback if inevitable.

Critical simulation model traffic operational characterizations were field observation
based. Departure headways were based on results of Efstathiadis' study (1992), which suggest
that overall average queue start-up lost time of 1.34 seconds can be attributed to the first four
vehicles and that average headways after the fourth vehicle were 1.82 seconds. Field data were
collected to provide the simulation model with appropriate average overall speed distributions.
The following relationship including all data points (1061) was selected for predicting Type 1
speed as a function of downstream clear space:

y = 13.033 + 0.026584 x (x<730ft, R=0.894)
where
y = average overall speed (ft/sec)

X = downstream clear space (ft)

119

R = correlation coefficient

Signal timing offset was the dominant factor affecting syste‘m performance; although, link
length was aiso important. When link length is short, the optimum offset is approximately zero,
regardless of the cycle length, for both one-way and two-way arterial street operations. This result
is identical to that found by Lieberman et al. (1986). Their study indicates that in closely spaced
high traffic density networks, optimal relative arterial offsets are approximately zero (simultaneous
green). As link length increases beyond the minimum 200 feet tested, for highest efficiency,
downstream intersection greens should begin before upstream intersection greens. This
relationship, opposite to conventional progression greens, moves downstream queues before
incoming platoon arrival. This is due to the longer queues possible with longer links which require
more time to move the last queued vehicle in the downstream link before oncoming piatoon
arrival. This offset was defined as the network throughput offset. This finding is quite different
frqm the traditional arterial progression approach in which upstream intersection greens begin
before downstream intersection greens so that a platoon of vehicles can pass the downstream
intersection without stopping. This was defined as the travel time offset.

Cross street traffic operations can have significant effects upon arterial performance and

system efficiency. When the cross street traffic demand is moderate to light (500 vehicles per

hour per lane), an optimum cross street to arterial street green ratio (gc/g) exists . When the 9c/g

ratio is larger than optimum, the cross street green is not fully used, however, when the de/g ratio

is smaller than optimum, cross street traffic demand exceeds capacity. Therefore, system

efficiency decreases as the g¢/g ratio varies from the optimum. However, when the cross street
traffic demand is heavy (1800 vehicles per hour per lane), no optimum 0¢/g ratio exists because
cross streets are oversaturated regardless of the g¢/g ratio. Furthermore, system efficiency
increases as the gg/g ratio increases regardless of offset | combination. Therefore, in
oversaturated conditions, a sufficiently long green interval should be assigned to cross streets to

increase system efficiency and to prevent avoidable queue spillbacks. With fixed but adequate

120

cross street green and best offsets, the arterial green interval duration has little effect on system
performance. However, system efficiency rapidly deteriorates when any cross street green
becomes too short for the link length. Therefore, a “practical® minimum green interval for cross
streets is necessary to accommodate the upstream cross street through traffic and turning
vehicles from the arterial. When the cross street green is shorter than the minimum, even with the
best offset combination, queue spillbacks occur in the cross streets and the system efficiency
deteriorates.

Multiple regression analysis was used to derive a relationship between traffic control
parameters and system efficiency as measured by network crossing time. For all cases, the
coefficients of C (cycle length) and GCR (green ratio; cross street green / arterial green) were not
significant at the 0.05 level. Only the estimated regression coefficients of OFFD (offset difference:
= offset 3 - offset 2, for a 200 foot link; or offset 3 - offset 2 + 15, for a 600 foot link) were
statistically significant. This result supports the previous conclusion that offset is the dominant
factor affecting system performance.

A curve fitting method was used to derive a relationship between offset difference (x) and

network crossing time (y). The equations obtained by this method are as follows:

y=1478.2 - 3.752x1 + O.442x12, for a 200 foot link, R2 = 0.902

y = 1322.1 + 8.790x2 + 0.332x22, for a 600 foot link, R2 = 0.968

where

y = network crossing time
x1 = offset 3 - offset 2, for a 200 foot link

(if x1 <0,x41=x1+C)
xo = offset 3 - offset 2 + 15, for a 600 foot link
(ifxo<0,x2=x2+C, ifx22C,x2=x2-C)

For two-way arterial streets and two-phase signal operation, simultaneous green signal

indications produced minimum network crossing time regardless of link length and cycle length.

121

This result is quite different from the one-way operation and the two-way and three-phase
operation result except when links are 200 feet long. This is due to reduced queue spillback
possibility in the two-way and two-phase operation when links are 400 or 600 feet long.

Two-way arterial, three-phase signal operation, with short 200 foot links, produced aimost
the same results as one-way operation in which simultaneous greens produced minimum network
crossing time regardless of cycle length. However, with long 600 foot links, results differ from
one-way operation in that the offset range producing minimum network crossing times was much
wider. Compared to two-way, two-phase operation with similar cycle length, maximum network
crossing times for three-phase cases are much longer. This is due to the increased number of
phases and lost time, and the possibility that vehicles using the protected arterial left turn, from
the arterial to the cross street, will spillback blocking the arterial. When this spillback situation

occurs, consequences are grave because the arterial flow is partially stopped.
6.2 RESEARCH CONTRIBUTIONS

The most significant contribution of this research is the development of a traffic simulation
model that deals with traffic signal timing in oversaturated conditions where existing models were
not suitable for application. The model is capable of not only simulating a single case, evaluating
existing traffic conditions, but also finding optimal solutions with respect to input parameters such
as offsets, cycle length, and green spilit.

The new model utilizes departure headway and average overall speed to simulate vehicle
movements, as explained in Chapters 4 and 5. This model is among the first in the area of
network traffic simulation models to do so and has some advantages over the conventional way
of simulating vehicle movements. With a large number of simulated vehicles in arterial networks,
this approach is more efficiently utilized in the model so that simulations can be done with iess
computational effort. With appropriate field data, this approach includes vehicle interactions while

moving, acceleration and deceleration rates, and cruising speed.

122

The development of the methodology for traffic signal timing in oversaturated traffic
conditions is another contribution of this research. Offset was the dominant factor affecting
system performance; although, link length was also important. With short link iengths, the
optimum offset is approximately zero, regardiess of the cycle length. With longer link lengths
beyond the minimum 200 feet tested, downstream intersection greens should begin before
upstream intersection greens for highest efficiency. This relationship, opposite to the conventional
arterial progression approach in which upstream intersection greens begin before downstream
intersection greens, is defined as network throughput offset. On the other hand, cycle length was
not an important factor affecting system performance unless any green duration is too short for

link length.

6.3 RECOMMENDATIONS

Application of Results

The traffic simulation model can be used to design a signal timing plan for an arterial
street experiencing oversaturated traffic demand conditions. The model is recommended 1o be
used in simulating not only a single case but also multiple cases (to find optimal timing). With
given data such as arterial traffic signal timing and geometric configurations, the model may be
used to simulate a single case evaluating existing conditions. Procedures for finding optimal input
parameters (cycle length, green split, and offsets) are described below.

While fixing all other input parameters, an optimal cycle length is obtained by simulating
cases with various cycle iengths and comparing the cases in terms of the network crossing time,
which is the most comprehensive system performance measure. Minimum and maximum cycle
lengths and a cycle length increment are required. An excessively long cycle length increment will
result in less accurate solutions; on the other hand, an excessively short increment will greatly

increase computer simulation time.

123

The same procedure can be applied to find an optimal green split. Minimum and
maximum arterial/cross street greens and a green increment are also required. While fixing all
other input parameters, an optimal green split is obtained by simulating cases with various
combination of arterial and cross street green intervals (but fixed cycle length) and comparing the
cases in terms of network crossing time.

To find optimal offsets, the model simulates cases with various combinations of offset 2
and offset 3 and while fixing all other input parameters. The best result, in terms of network
crossing time, provides the best combination of offset 2 and offset 3. Minimum offset is set to zero
while maximum offset is a cycle length minus an offset increment.

Further Study

This study was an initial attempt to develop a methodology for traffic signal timing in
oversaturated arterial networks using the newly developed traffic simulation model. Thus, this
study has some limitations in assumptions and arterial geometric configurations.

Since only one-way cross street operation was considered, the model should be
extended to handle two-way cross streets. However, two-way cross street operation will add
complexity in terms of the number of signal phases and turning movements. The type of
intersection control is limited to pretimed signals. With oversaturated conditions, however,
actuated signal control essential becomes virtual pretimed control. Simplifying assumptions
regarding the number of vehicle classes (currently one) might be released. This would better
enable analyses of those special arterial street cases in which trucks could be very important.
The model, which can accommodate nine intersections that include three arterial intersections,

should be extended to deal with more arterial and cross street intersections.

124

Appendix A

Source Code (One-way Operation Version):

Traffic Simulation Model For Oversaturated Arterial Networks

125

program

¢ traffic simulation model for oversaturated
arterial networks

¢ this model is designed specifically for
oversaturated arterial traffic conditions.

¢ traffic demand at the entry of the arterial
street is greater than the capacity.

¢ definitions of input parameters

¢ mult: nurber of cases (0; single case,l;
multiple cases for optimization)

¢ jeye: cycle length optimization (0; no,1;
yes)

¢ jvar: variability of parameters (0; no,1;
ves)

¢ nvol: murber of vehicles to be simulated

¢ nowua: mumber of signal cycles for warm-up
time

¢ tde: cross street traffic demand (arriving
headway)

¢ nac: nunber of turning vehicles per cycle
fram arterial to cross street(CS)

¢ nca: nurber of tuming vehicles per cycle
fram CS to arterial

¢ dist(1): link length between the 1st and 2nd
intersections (ft]

¢ dist(2): link length between the 2nd and 3rd

intersections [ft]

wida: width of arterial [ft]

widc: width of cross streets [ft]

avsh: average vehicle space headway [ft]

icl: cycle length [sec]

lgi: arterial green interval [sec]

idkn: difference between maximm and minimum

arterial greens [sec]

incg: increment of idwn (for cptimization)

[sec]

¢ ipt: protected left turn phase duration (only
for two-way operaticn) [sec]

jdg: minimum delay to determine a queue

spillback [sec]

noff(l): offset 1 [sec]

joffl: minimum offset 2 (0, for optimizaticon)

ioff2: minimum offset 2 (C, for optimization)

)
)

0 [o TN IO TS BES NN e}

Q
.

joffl: minimm offset 3 (0, for optimization
joff2: minimm offset 3 (C,for optimization
incre: increment of offsets (for
cptimization)

aO0n00n0a0

dimension axrl{(0:1500), depl(0:1500),
arr2(0:1500)
dimension dep2(0:1500),
Jep3 (0:1500)
dimension arr11{0:1500), depll(0:1500),
arr2l(0:1500)
dimension dep21(0:1500),
Jep31(0:1500)
dimensicn zz(0:100), zsut(0:100), igf(20)
dimension arrr2(0:500), arrl3(0:500),
arrr4 (0:500)
dimension carrll(0:500),
carri3{0:500)

arr3(0:1500),

arr31(0:1500),

carrl2(0:500),

127

dimension ki2(0:1500), ki3 (0:1500),
ki21(0:1500), ki31(0:1500)

dimension dist (20), iveh(20), ir(20), ig(20),
irl (20}, igl(20)

dimension ptal(0:15, 0:15), pta2(0:15, 0:15)

dimension ptcl(0:15, 0:15), ptc2(0:15, 0:15)

dimension ptc3(0:15, 0:15), ptat(0:15, 0:15),
ptct(0:15, 0:15)

dimension ptst(0:15, 0:15), spst(0:15, 0:15)

dimension maxr(0:15, 0:15),
mw(0:15, 0:15)

mal(0:15, 0:15),

dimension ¢s2(100), gs20(100), gs21(100),
@s31(100)

dimension gst(100), gstl(100), gsti(100),
Qstil (100)

dimension noff (20), jgnl(100), jon2(100),
Jon3 (100)

dimension nka(100), nka0(100), nkal(100),
nka2 (100)

dimension gei(100), ¢si0(100), gsil(100),
@=12(100)

dimension suts(0:100, 0:60), suts0(0:100, 0:60)

dimension sutsl(0:100, 0:60), suts2(0:100,
0:60)

dimension rgst(100), rgstl(100),

dimension rgs2(100),
rgs31(100)

dimension tuz(15),

dimension kfa(10),

dep (10)
rgs20(100), rgs21(100),

dtuz (15)

ma{l5), st(15), stl(15)

dimension mcl1(0:15, 0:15), mcrl(0:15, 0:15)

dimension carrl(0:1500), cdepl(0:1500),
carr2(0:1500)

dimension cdep2(0:1500), carxr3(0:1500),
cdep3 (0:1500)

dimension darrl(0:1500), ddepl(0:1500),
darr2(0:1500)

dimension ddep2(0:1500), darr3(0:1500),
Adep3 (0:1500)

dimension kir2(0:1500), kir3(0:1500),
kir21(0:1500)

dimension irr(20), igr(20), irrl(20), igrl(20),
kir31(0:1500)

dimension nkar(100), nkarl(100)

dimension sutsr(0:100, 0:60), sutsrl(0:100,

0:60)

dimension qgsr2(100), gsr21(100), gstr(100),
gstrl (100)

dimension gsir(100), q@sirl(100), qstir(100),
qstird (100)

dimension rgsr2(100), rgsr21(100), rgstr(100),
rgstrl (100)

dimension mcl2(0:15, 0:15), mcr2(0:15, 0:15)

dimension earrl(0:1500), edepl(0:1500),
earr2(0:1500)

dimension edep2(0:1500), earr3(0:1500),
edep3 (0:1500)

dimension farrl(0:1500), fdepl(0:1500}),
farr2(0:1500)

dimension fdep2(0:1500), farr3(0:1500),
£dep3 (0:1500)

dimension kis2(0:1500), kis3(0:1500),
kis21(0:1500)

dimension irs(20), 1gs(20), irs1(20), igs1l(20),
kis31(0:1500)
dimension nkas(100), nkasl(100)

dimension sutss(0:100, 0:60), sutssl(0:100,
0:60)

dimension gss2(100), gss21(100), gsts (100},
gstsl (100)

dimension gsis(100), gsisl(100), gstis(100),
gstisl(100)

dimension rgss2(100), rqss21(100), rgsts(100),
rgstsl(100)

dimension mcl3(0:15, 0:15), mer3(0:15, 0:15)

dimension garrl(0:1500), gdepl(0:1500),
garr2 (0:1500)

dimension gdep2(0:1500), garr3(0:1500),
gdep3 (0:1500)

dimension harrl(0:1500),
harr2(0:1500)

dimension hdep2(0:1500),
hdep3 (0:1500)

dimension kit2(0:1500), kit3(0:1500),
kit21(0:1500)

dimension irt(20), igt(20), irtl(20), igtl(20),
kit31(0:1500)

hdepl (0:1500),

harr3(0:1500),

dimension nkat (100), nkatl(100)

dimension sutst(0:100, 0:60), sutstl(0:100,
0:60)

dimension gst2(100), gst21(100), gstt(100),
gsttl(100)

dimension gsit(100), @sitl(100), gstit(100),
gstitl(100)

dimension rgst2(100), rqgst21(100), rgstt(100),
rgsttl(100)

dimension mj(100), mj1(100), mj2(100), bj(30),
bj1(30), bj2(30)

dimension dy1(0:60), d&v2(0:60), &3(0:60)

dimension d&v4(0:60), dy5(0:60), dy6(0:60)

dimension dy11(0:60), dy12(0: 60), dy13(0:60)

dimension dy14(0:60), &15(0:60), d&/16(0:60)

dimension dy21(0:60), d&y22(0:60), dv23(0:60)

dimension d&y24(0:60), &25(0: 60), dy26(0:60)
dimension dy31(0: 60), Ay32(0:60), dy33(0:60)
dJ.mensJ.on dy34(0:60), dy35(0:60), Av36(0:60)

open(4, file="input', status='old',
form="'formatted')

read(4, *) mult, joyc, jvar

read(4, *) nvol, ncwu, tdc, nac, nca

read(4, *) dist(l), dist(2), wida, wide, avsh

read(4, *) icl, 1lgi, id&m, incg, ipt, jdg

read(4, *) noff(l), ioffl, ioff2, joffl, joff2,
incre

open(unit=10, file='yid', status='unknown',
form="formatted')

open(unit=11, file='y2i', status='unknown',
form="formatted"')

open(unit=20, file='y5p', status='unknown',
form="formatted')

open(unit=21, file='y6j', status='unknown',
form="formatted"')

open(unit=30, file='y7', status='unknown’,
form="*formatted')

128

open(unit=31, file='y8', status='unknown',
form="formatted')

open{unit=40, file='y9',
form='formatted')

open (unit=41, file='y10', status='unknown',
form="'formatted')

open(unit=50, file='sc', status='unknown', \
form="unformatted')

status="unknown',

Jul = 10
ku2 = 11
kus = 20
kué = 21
ku7 = 30
ku8 = 31
ku9 = 40
kulo = 41
kul5 = 50
[

Iri = icl - 1lgi
¢ lri: arterial red interval [sec]

nacl = nac

ncas = nca

if (jdg.eq.11) then

nacl = 3*nac

ncas = 3*nca

endif

if(mult.eq.l) then -
write(kul, 120) icl, 1lgi, lri, dist(1)
write(ku2, 120) icl, lgi, lri, dist(1)
write(ku5, 120) icl, 1gi, lri, dist(l1)
write(ku6, 120) icl, lgi, 1ri, dist(1)

120 format(/2x, 'C=', i3, ‘'sec.', ' g=', i2, °

r=', i2,',link length =', £5.0,
write(kul, 125) nacl, ncas
write(ku2, 125) nacl, ncas
write(kuS, 125) nacl, ncas
write(kué, 125) nacl, ncas
125 fommat (2%, ‘turn-in: ',

iz, ' veh/cycle, ' ,

' veh/cycle')
endif

‘fr. ')

' (art to cro) =',
(cro to art) =", i2,

do 400 ip = ioffl,ioff2
do 410 jp = joffl,joff2
do 420 kp = 1gi,lgi+idm, incg

noff(2) = ip*incre
noff(3) = jp*incre

if (noff(2) .ge.icl) noff(2)
if (noff(3) .ge.icl) noff(3)
ipz = noff(2)

Jjpz = noff(3)

lgi =]@
if(jcoyc.eq.l) then
1ri = kp/incg

icl = lgi + 1ri
else

Iri = icl - kp
endif

noff(2) - icl
noff(3) - icl

if (mlt.eq.0) then

call HEAD(kul, icl, 1gi, lri, noff(2), noff(3))

call HEAD(ku2, icl, lgi, lri, noff(2), noff(3))
endif
do 130 ij = 1,100

nka(ij) =1
nka0(ij) =1
nkal(ij) =1
nka2(ij) = 1

130 continue
¢ nka: serial nurber,starts form the begimming
of each green

do 140 km = 0,300

carrll(km) = 0.
carxl2(km) = 0.
carri3(km) = 0.
arrx2(km) = O.
arrl3(km) = O.
arrrd (km) = 0.

140 continue

*xxk% Arterial,A direction**rr*¥*+xx
*xkrk Right lane

call INPUT(icl, dist, iveh, speed, ni)

ixtll

ixt12

ixti3

ixt21

ixt22

ixt23

c speed: average overall speed (fps)

¢ ixt: 1; if signal timing updates (green
ends) ,to exit or enter LEFTL or RIGHIL. O;
otherwise, 1st digit: l-right lane,2-left
lane; 2nd digit: intersection #

¢ iveh: maximum nunber of vehicles can be
stored in a link

¢ ni: muber of arterial intersections

LI [T I L 1
[eNoNeNoNe Nl

ntg = 99
Jvol = 0

¢ jvol: cumlative mudber of vehicles similated

kskip = 0
¢ kskip: 1; simulation ends,0; otherwise

do 150 7 = 1,10

kfa(j) =0

150 continue

¢ kfa: 1; initialize,0; skip,

do 160 j = 1,15
ma(j) =1
tuz(j) = 0.0
druz(j) = 0.0

160 continue

c ma: do loop index

¢ tuz: the time queue spillback is cleared

¢ dtuz: departure delay in the next green
interval

nibi = 0
nibj = 0
imgl = 0

129

:

iy
W oo
OO OO0

2l

mgc31

Jac =

jor = 0

Jjorl

jor2 = 0

jéum = -302357

c img: determine whether to exit or enter main
subroutines

¢ mge: mmber of vehicle stored in the link

¢ jac: 1; arterial,0; CR

¢ jor: number of turning vehicles during each
green interval

el L B 1]

0

c-——— Initialization

if (kfa(l).eq.0) then

call SIGNAL(1, speed, icl, ni, ir, ig, noff,
1gi)

call INIT{arrl, depl, arx2, dep2, arr3, dep3,
nc, ne, ng, ki, k2, k3, i, n, m)

c arri: arrival time at intersection i

¢ depi: departure time at intersection i

¢ ne, ne, ng, ki, k2, k3, i, n, m: index

call INITL(jo, nr, iup, igi2, igi3, ncyl, ncy2,
ncy3, na2, no3, ng2i, igt, ige, igea, igti,
ngst)

¢ jo: mmber of turning-out vehicles fram
arterial per green

¢ nr, nl, nn: mmber of twrning-in vehicles
fram CR per cycle

c iup: 1: next turning-in vehicle cames in next
green, 0: otherwise

c igi: nurber of queue spillback indicators
(0Si) caused by thru traffic (link is full)

¢ ncy: mmber of cycles

¢ ng: mmber of vehicle stored in the link

¢ igt: mmber of QSi caused by turning vehicles
(1ink is full)

¢ ige: 1; QS caused by turning-in vehicle(s)
occurs,0; otherwise

¢ igea: 1; use arrr(n) instead of arr(m-1) for
variable time in NOQUE,Q; otherwise

¢ igti: mumber of QSi caused by turning
vehicles (lirk is not full)

c ngst: mmber of queue spillback (QS) caused
by twrning vehicles

call INIT2(nii, isp, igs, ngs, niqg, dtiq, nua,
dtua, nux, dtux)

c nii: 1; QSi by turning vehicles occurs,0;
otherwise

¢ isp: number to detect new queue
spillback, similar to muber of cycles but
different

¢ ngs: munber of QS caused by thru traffic

¢ nig: 1; QS by turning vehicles occurs
(affects next green),0; otherwise

¢ drig: delay of departure when nig=1

¢ mua: 1; igi>0 or QS by thru traffic occurs
(link is full),0; otherwise

¢ dtua: delay of departure when nua=1

¢ nux: 1; QS by thru traffic occurs (link is
full),0; otherwise

¢ dtux: delay of departure when mux=1

call INTT2(niil, isp0, igs0, ngs0, niqg0, driqo,
mal, dtual, nux0, dtux0)

call SIGADT(ir, ig, 1lri, lgi, icl, dist, speed,
jac, ke, arrr2, jdum,jvar)

call SIGNAL(1, ni, ir, ig, irl, igl)

ismt = ig(2) + nown * icl
C ismt: warm-up time (10 signal cycles)

igf(1l) = ig(1)
igf(2) = ig(2)
igf(3) = ig(3)
jonl(l) = ig(1)
jm2(1) = ig(2)
jon3(1l) = ig(3)

c jon: beginning of green interval

do 190 k = 2,100

Jonl(k} = jonl(k~1) + icl
jgn2(k) = jon2(k-1) + icl
jom3(k) = jgn3(k-1) + icl

190 continue

call DPHDWY (zz, zsut)

¢ zsut: time required for the nth vehicle in
the queue

¢ to start moving after signal turns green

do 200 im = 1,100

do 210 jm = 0,60,1

suts(im, jm) = jgn2(im) + zsut(jm)
suts0 (im, jm) Jjgn3 (im) + zsut (jm)
sutsl(im, Jm) Jon2 (im) + zsut(jm)
suts2(im, jm) Jon3 (im) + zsut (Jm)
210 continue

200 continue

C suts: time to start moving

o

oo

kfa(l) = 1
endif

s

karxl

krx2

ncy2l = 0

igt(2) = 0

c smtj: the time simlation ends

¢ krxl: 1; skip RIGHTL of 1st CR (QS in lane 7
ror 9 blocks lane 6 duringr the whole next
green),0; otherwise

¢ krx2: 1; skip RIGHIL of 2nd CR (QS in lane 9
blocks lane 8 duringr the whole the next
green),0; otherwise

0.
0
0

noan

1000 continue

130

kxrt3

ips2

ips3

¢ kltl: 1; execute LEFTL of lst CR,0; skip it
¢ krt2: 1; execute RIGHTL of 2nd CR,0; skip it
¢ isp2: 1; skip CROSST,0; otherwise

(a4

W
L O O VR T
leRoloNoNeNoNoNe!

if (ncy2l.ge.4) then

if(ig(l).gt.igrl(2).or.igl (1) .gt.igr(2)) then
1f(ig(1).gt.igrl(2)) ketl = 1
if(igl(l).gt.igr(2)) kltl = 1 i
ips2 = 1

go to 1010

endif

if(ig(2).gt.igs(2)) then

if(ig(2).gt.igs(2)) klt2 = 1

ips3 =1

go to 1020

endif i
if(ig(3).gt.igt1(2).or.igl(3).gt.igt(2)) then
if(ig(3).gt.igt1(2)) krt3 = 1
if(igl(3).gt.igt(2)) klt3 = 1

go to 1030

endif

endif

731 call RIGHTL(1, nvol, dist, iveh, speed,
Jdq, mult, icl, lgi, kul, arrr2, carrl2, m, -
ml, ma, ntg, jvol, imgl, ki2, ki3, jo, ar,
at2, arrl, depl, arr2, dep2, arr3, dep3, i,
k1, k2, k3, ig, ir, nc, ne, ng, igi2, iqi3,
as2, gs20, ng2, na3, ncyl, ncy2, noy3, nka,
nka0, isp, isp0, nua, nuald, dtua, dtual,
suts, suts0, igs, igs0, gsi, gsi0, ngs,
ngs0, rgs2, rgs20, nig, nig0, dtiq, dtiqo,
mx, mux0, dtux, dtux0, jac, tuz, dtuz, 10,
11, 12, ng2i, muzjl, dtuzil, n, iup, iqt,
ast, ige, igea, nii, nii0, iqgti, gsti, ngst,
rgst, jor, mgc2, sutssl, ispsl, nkasl, ismt,
nibi, nibj, ixcll, ixtl2, ixti3, icy, st,
stl, mac, noff, krt3, krxl, irs, edep3,
jdum, dvl, dv2, &3, jvar)

wekrx Arterial A direction rrrwewwsx
xxxx*k Left lane

if(kfa(2).eq.0) then

jo2 = 0

call INIT(arrll, depll, arx21, dep2l, arr3i,
dep3l, ncl, nel, ngl, k11, k21, k31, ii, mn,
m)

call INIT1(jol, nl, iupl, iqgi2l, iqi3l, ncyll,
ncy2l, ncy3l, ngl2, ngl3, ngl3i, igrl, igel,
igeal, igtil, ngstl)

call INIT2(niil, ispl, igs2, nqgs2, nigl, dtigl,
nual, dtual, nuxl, dtuxl)

call INIT2 (nii2, isp2, igs3, ngs3, nig2, dcig2,
mna2, dtua2, nux2, dtux2)

mx3 = 0

drux3 = 0.

kfa(2) =1

endif

call LEFTL(2, nvol, dist, iveh, speed, jdg,
malt, icl, lgi, ku2, arrl3, carxrll, m, ma,
ntg, jvol, img2, img3, ki2l, ki3l, krt2,
k1t3, ixt2l, ixt22, ixc23, jol, nl, at3,
arrll, depll, arr2l, dep2l, arr3l, dep3l,
ii, k11, k21, k31, igl, irl, ncl, nel, ngl,
igi2l, igi3l, gs2l, g@s3l, ngl2, ngl3, ncyll,
ney?2l, ncy3l, nkal, nka2, ispl, isp2, nual,
nua2, dtual, drua2, sutsl, suts2, igs2,
ige3, gsil, gsi2, ngs2, ngs3, rgs2l, xgs3i,
nigl, nig2, drigl, dtig2, nuxl, nux2, dtuxd,
dtux2, jac, tuz, dtuz, 20, 21, 22, ngl3i,
muzj2, dtuzj2, nn, iupl, igtl, gstl, igel,
igeal, nii2, iqtil, gstil, ngstl, rgstl,
jorl, mgcl, mqe3, sutsr, ispr, nkar, ismt,
carrl3, jo2, nuzj3, dtuzj3, jor2, sutst,
ispt, nkat, icz, st, stl, nac, noff, krxl,
krx2, nux3, dtux3, irr, irt, cdep3, gdep3,
j&m, dy4, dv5, dv6, jvar)

if(krxl.eg.l.and. krx2.eq.1l) levp = 1

if(krx2.eq.l) krt2 = 0

% g kok Kk lst Cmss Street kkkkKkkkhkkkkxkk

1f((ixt2l.eq.l.or.imR.eq. 1. or.ixtll . eg.1.and.
krxl.ne.l) .or.levp.eq.l) then
if{ixt2l.eqg.l.or.img2.eq.1) kitl = 1
if(ixtll.eqg.l.and.krxl.ne.1) krtl =1

1010 write(kuls) (mj (imj), imj=1, 45)

write (kul5) (mj (imj), imj=46, 56)

write(kul5) (bj (ibj), ibj=1, 18)

rewind (kuls)

if(kexl.eq.l) kxtl =0

if(levp.eg.1l) kltl = 1

if(kltl.eqg.0.and.krtl.eq.0.and.ips2.eg.1) go to
731

call CROSST(1, ku5, ku6, tde, carrll, arrr2,
nvol, 1lri, noff, icl, jd&q, ipz, jpz, speed,
ntg, mult, jvol, tuz, dtuz, mgel, mocll,
kitl, krtl, 30, 32, ispr, nkar, sutsr,
isprl, nkarl, sutsrl, dist, iveh, ismt, irr,
igr, irrl, igrl, igf, kfa, ma, st, stl, nca,
5, igir2, gsr2, igsr, gsir, ngsr, rgsr2,
igtr, gstr, igtir, gstir, ngstr, rgstr,
kir2, kir3, 6, igir2l, gsr2l, igsrl, gsirl,
ngsrl, rgsr2l, igerl, gstrl, igrirl, gstird,
ngstrl, rgstrl, kir2l, kir3l, carrl, cdepl,
carr2, cdep2, carr3, cdep3, darrl, ddepl,
darr2, ddep2, darr3, ddep3, isp, nka, suts,
ng2i, dep2,jdum, dyll, dvl2, dvl3, dyl4,
dyl5, dyl6, jvar, ispec)

if(ispec.eq.99) then

ispec = 0

endif

read (kul5) (mj (imj), imj=1l, 45)

131

read(kul5) (g (imj), imj=46, 56)
read(kul5) (bj (ibj), ibj=1, 18)
rewind (kul5)

endif

1f(ips2.eq.1l) go to 1070
*kkkk 2nd Cross street *hkkEKERI X, hhx*k

if(ixtl2.eqg.l.or.imgl.eq.1.or.krt2.eq.1l.or.
ixt22.eg.l.and.krx2.ne.1) then
if(ixtl2.eq.l.or.imgl.eqg.l) kit2 = 1
if(ixt22.eg.l.and.krx2.ne.1) krt2 = 1

1020 write(kuld) (mjl(imj), imj=1l, 45)

write(kul5) (mjl (imj), imj=46, 56)

write(kuls) (bjl(ibj), ibj=1l, 18)

rewind (kuls)

if(krx2.eq.1) ka2 = 0

call CROSST(2, ka7, ku8, tdc, carrl2, arrl3,
nvol, 1lri, noff, icl, jdg, ipz, jpz, speed,
ntg, mult, jvol, tuz, dtuz, mgc2, mgczl,
k1t2, kxt2, 40, 42, isps, nkas, sutss,
ispsl, nkasl, sutssl, dist, iveh, ismt, irs,
igs, irsl, igsl, igf, kfa, ma, st, stl, nca,
7, igis2, gss2, igss, gsis, ngss, rgss2,
igts, gsts, igtis, gstis, ngsts, rgsts,
kis2, kis3, 8, igis2l, gss21, igssl, gsisl,
ngssl, rgss2l, igtsl, gstsl, iqtisl, gstisl,
ngstsl, rgstsl, kis2l, kis3l, earrl, edepl,
earr2, edep2, earr3, edep3, farrl, fdepl,
farr2, fdep2, farr3, fdep3, isp2, nka2,
suts2, ngl3i, dep3l,jdum, dy2l, dy22, dv23,
dy24, &25, dy26, jvar, ispec)

read(kul5) (mjl(imj), imj=1, 45)

read (kul5) (mjl(imj), imj=46, 56)

read (kuls5) (b3l (ibj), ikj=1, 18):

rewind (kul5)

endif

if(ips3.eq.1l) go to 1070
KKK K 3rd Cross Street khkkhkhkikkkhkkhhkk

if(ixt23.eq.l.or.img3.eq.l.or.ixt13.eq.1.0r.
krt3.eq.l) then

if (ixt23.eqg.l.or.img3.eqg.1) kit3 = 1
if(ixt13.eq.1l) krt3d = 1

1030 write(kulS) (mj2(imj), imj=1, 45)

write(kul5) (mj2(imj), imj=46, 56)

write(kuls) (bj2(ibj), ibj=1l, 18)

rewind (kul5)

if(igt(2).gt.igl(3)+icl) k13 = 0

call CROSST(3, ku9, kul0, tdc, carrl3, arrr4,
nvol, 1lri, noff, icl, jdg, ipz, jpz, speed,
ntg, mlt, jvol, tuz, dtuz, mge3, mge3l,
k1t3, krt3, 50, 52, ispt, nkat, sutst,
isptl, nkatl, sutstl, dist, iveh, ismt, irt,
igt, irtl, igtl, igf, kfa, ma, st, stl, nca,
9, igit2, gst2, igst, gsit, ngsu, rgst2,
igtt, gstt, igtit, gstit, ngstt, rgstt.
kit2, kit3, 10, igit2l, gst21, igstl, gsitl,
ngsul, rgst2l, igttl, gsttl, igeitl, gstitl,

ngsttl, rgsttl, kit2l, kit31, garrl, gdepi,
garr2, gdep2, garr3, gdep3, harrl, hdepl,
harr2, hdep2, harr3, hdep3, isp2, nka2,
suts2, 0, dep3l,jdum, &v31, &32, 33,
dy34, &35, dy36, jvar, ispec)

read(kul5) (mj2 (imj), imj=1, 45)

read(kul5) (mj2 (imj), imj=46, 56)

read(kul5) (bj2(ibj), ibj=1, 18)

rewind (kul5)

endif

1070 if(jvol.ge.mwvol+400.and.kskip.ne.1) then

mald =ma(l) -1
mbld = ma(2) - 1
mcl0 = ma(5) - 1
mdl0 = ma(6) - 1
mcll = ma(7) - 1
mdll =ma(8) ~ 1
mcl2 = ma(9) - 1
mdl2 = ma(10) - 1

call NOWUP(depl, dep2, dep3, ismt, nvl, malld)

call NOWWUP(depll, dep2l, dep3l, ismt, nv2,
b10)

call NOWUP(cdepl, cdep2, cdep3, ismt, nvs,
mc10)

call NOWWUP(ddepl, ddep2, ddep3, ismt, nvé,
ad10)

call NOWUP(edepl, edep2, edep3, ismt, nv7,
mcll)

call NOWWUP(fdepl, fdep2, fdep3, ismt, nvs,
md11)

call NOVWUP(gdepl, gdep2, gdep3, ismt, nv9,
mcl2)

call NOWUP(hdepl, hdep2, hdep3, ismt, nvl1o0,
md12)

Wl = NVIHV2HIV3+HNVAHIVSHIVE+NV7+nvE+Ivo+nvi0

call findep(dep2, malld)
call findep(dep2l, mbl0)
call findep(cdep2, mcl0)
call findep(ddep2, mdl0)
call findep(edep2, mcll)
call findep(fdep2, mdll)
call findep(gdep2, mcl2)
call findep(hdep2, mdl2)
dep(l) = dep2 (mall)
dep(2) = dep2l (bl0)
dep(3) = cdep2(mcl10)
dep(4) = Adep2 (rd10)
dep(5) = edep?(mcll)
dep(6) = £dep2 (mdll)
dep(7) = gdep2 (mcl2)
dep(8) = hdep2 (mdl2)
call piksrt(8, dep)
Jmin = 1

ddif = dep(8)/5.

o2l = dep(2) - dep(l)
if(dep(2).gt.1000.and.Gp21.1£.100) jmin = 1
if(Qep(2) .gt.dep(1)+ddif) jmin = 2

1f(dep(3) .gt.dep(2)+ddif) jmin
if(dep(4).gt.dep(3)+ddif) jmin

[N VS]

132

1if(dep(5) .gt.dep(4)+ddif) jmin = 5
220depmin = dep (jmin)
diffd = abs(depmin - depnp)

1f(diffd.gt.0.01) then

call NOVSIM(dep2, mall, depmin, novl)
call NOVSIM(dep2l, mbl0, depmin
call NOVSIM(cdep2, mcl0, depmin
call NOVSIM(ddep2, mdl0, depmin
call NOVSIM(edep2, mcll, depmin
call NOVSIM(fdep2, mdll, depmin
call NOVSIM(gdep2, mcl2, depmin

call NOVSIM(hdep2, mdl2, depmin, novl0)
novt = NoOVIHIOV2+N0ovS+Nove+nov7-+nove+novo+

novl0
if (novt.ge.nvol+mmu) then
kskip = 1
go to 250
endif
endif
derp = depmin
endif

250 if(kskip.eqg.l) then

do 260 time = depmin,depmin-1000,-0.5

call NOVSIM{(dep2, mall, time, novl)

call NOVSIM(dep2l, mbl0, time, novl)

call NOVSIM(cdep2, mclQ, time, novs)

call NOVSIM(ddep2, mdl0, time, nové)

call NOVSIM(edep2, mcll, time, nov7)

call NOVSIM(fdep2, mdll, time, nov8)

call NOVSIM(gdep2, mcl2, time, nov9)

call NOVSIM(hdep2, md12, time, novi0)

nsim = NoVI+nov2+nov3+NovA+NoVS+novVE-HNovT+
nov8+novo+ novif-rmma

if (nsim.le.nvol) go to 270

260 continue

endif

if(jvol.lt.nvol+1500) go to 1000

270 smtj = time
nosl = novl - nvl

if(nosl.1t.0) nosl = 0
nos2 = nov2 - nv2
nos5 = novs - s
nosé = nové ~ nvé
if(nos6.1t.0) nos6 = 0

nos7 = nov7 - nv7
nos8 = nov8 - nv8

if (nos8.1t.0) nos8 = 0
nos? = novd - nvo
if(nos9.1t.0) nos9 = 0
nosll = novi0 - nvio

**Ekxx Print queue spillback statistics

**arterial,right lane (A dirction)

Sn’pd = SIntj - isfnt

oy = int(smpd/icl) + 1

call PRNOS(kul, 2, icl, lgi, igi2, as2, jey,
igs, gsi, ngs,rgs?, prgs, pgs, pgsn, PEas,
ismt, smtj, mult)

call PRNQST(kul, 2, igt, gst, iqci, gsti, joy.
ngst, rast, prgst, pgst., pgstn, ptast, ismt,
antj, malt)

call PRNQS(kul, 3, icl, lgi, iqgi3, @s20, jeoy.
igs0, @si0, ngs0,rgs20, pragsl, pasl, pgsnl,
ptgsl, ismt, smtj, mult)

**arterial,left lane (A dirction)

call PRMQS(ku2, 2, icl, lgi, igi2l, gs21, joy,
igs2, gsil, ngs2,rgs2l, prgs2, pdgs2, pasnz,
ptas2, ismt, smtj, malt)

call PFRNOS(ka2, 3, icl, lgi, iqgi3l, gs31, jov,
igs3, @si2, ngs3,rgs3l, prgs3, pgs3, pdasn3,
ptgs3, ismt, smtj, malt)

call PRNQST(ku12, 3, igtl, gstl, igril, gstil,
joy, ngstl, rgstl, prgst3, pgst3, pgstn3,
ptgst3, ismt, smtj, malt)

**crogss street 1,left lane

call PRNQS(kuS, 3, icl, 1ri, igir2, gsr2, jov,
iger, gsir, ngsr,rgsr2, prga, pga, pana,
ptaa, ismt, smtj, mult)

call PRNQST(kuS, 3, iqtr, gstr, igtir, gstir,
joy, ngstr,rgstr, prgta, pgta, patna, ptata,
isnt, smtj, mult)

**cross street 1,right lame

call PRNQS (ku6, 3, icl, 1ri, igir2l, gsr2l,
jey, igsrl, gsirl,ngsrl, rgsr2l, prgal,
pEl, panal, ptgal, ismt, smt3, mult)

call PRNQST (ku6, 3, iqtrl, gstrl, iqgtird,
gstirl, jcy, ngstrl,rgstrl, pragtal, patal,
patnal, ptgral, ismt, smtj, mult)

**crosg street 2,left lane

call PRNQS({ku7, 3, icl, 1lri, igis2, gss2, jcv,
igss, gsis, ngss,rgss2, prdb, pdb, panb,
ptab, ismt, smcj, malt)

call PRNQST(ku7, 3, igts, gsts, igtis, astis,
jcy, ngsts,rgsts, pratb, patb, patnb, ptatb,
ismt, smtj, malt)

**crogs street 2,right lane

call PRNQS (ku8, 3, icl, lri, igis2i, gssz2l,
jeoy, igssl, gsisl,ngssl, rgss2l, ptgbl,
pabl, panbl, ptgbl, ismt, smtj, malt)

call PRNQST(ku8, 3, igtsl, gstsl, igtisi,
gstisl, jcy, ngstsl,rgstsl, pratbl, pgthbl,
patnbl, ptgebl, ismt, smtj, mult)

**cross street 3,left lame

call PRNQS(ku9, 3, icl, lri, igit2, gst2, jcvy,
igst, gsit, ngsu,rgst2, prge, pac, pAnc,
ptgc, ismt, smtj, mult)

call PRMOST(ku9, -3, igtt, gstt, igtit, gstit,
joy. ngstt,rgstt, prgte, pgtc, patne, ptate,
ismt, smtj, mult)

**cross street 3,right lane

call PRNOS(kul0, 3, icl, 1ri, iqit2l, gst2l,
Jjoy, igstl, gsitl,ngsul, rgst2l, prgcl,
pacl, pancl, ptgel, ismt, smtj, malt)

call PRNQST(kul0, 3, iqttl, gsttl, igtitl,
gstitl, jeoy, ngsttl,rgsttl, prgtcl, pgtel,
patncl, ptgtel, ismt, smtj, mult)

133

*hdkkdk

if(mult.eq.1) then

write(kul, 310) ip*incre, jp*incre
310 format (/' offset2=', i3, ',offset3=', i3)

ptal(ip, jp) = ptgs + ptast + ptasl

pta2{ip, jp} = ptqs2 + ptgs3 + ptgst3
ptcl{ip, jp) = ptea + ptgta + ptgal + ptgral
ptc2{ip, jp) = ptgb + ptarb + ptabl + ptatbl
ptc3(ip, jp) = ptac + ptgtc + ptacl + ptatcl
ptat(ip, jp) = ptal(ip, jp) + pta2(ip,” ip)
ptet(ip, jp) = ptcl(ip, jp) + ptc2({ip, ip) +

ptc3 (ip, jp)
ptst{ip, jp) = ptat(ip, jp) + ptct{ip, jp)
spst (ip, jp) = smpd
mwu{ip, jp) = rwu

mar{ip, jp) = nosl
mal (ip, jp) = nos2

mcll (ip, jp) = nosb5
merl{ip, jp) = nosé
mcl2(ip, jp) = nos7
mer2 (ip, jp) = nos8
mcl3(ip, jp) = nos9
mer3(ip, jp) = noslo

write(kul, 320) ptat(ip, jp). ptct(ip, Jp).
ptst(ip, jp), smpd

320 format(' P(A)=', £5.2, 'P(C)=', £5.2,
‘P(T)="', £5.2, 'Pd=*, £6.0)
endif

sk ek

if (malt.eq.0) then

write(kul, 330) smpd

330 format (2x, ‘'Simulation Period(Total):',
£6.0, ' sec’)

write(kul, 340) nvl, nv2, nvs, nvé, w7, nvs,
w9, nvl0

write(kul, 350) nosl, nos2, nosS, nos6, nos7,
nos8,nos9, noslo

340 format (/2x, 'Wi(AlR,A1L,C1L,CIR,C2L,C2R,

', C3L, ', ' C3R) :', /4x, T{i4, ', '), 14)
350 format(/2x, 'Si(AlR,AlL,ClL,CIR,C2L,C2R,
‘', C3L, ', ' C3R) ', /4x, 7(i4, ', Y), i4)
jtot = rwu + nsim
write(kul, 355) mwa
355 format (/2x, 'V (warmmp) : ', 14,

vehicles')

write(kul, 357) nsim

357 format (/2x, 'V (simulation) :
vehicles')

write(kul, 360) jtot

360 format({/2x, 'V (total) :
vehicles*)

endif

-' i4’ 1

v, 14,

420 contimue
410 continue
400 continue
*xxx*Print summarized outputs

if(malt.eqg.1l) then

write(kuS, 510)

510 format (/2X, 'No.of queue spillback per
cycle')

call PRNOPL(ku5, 1, 1, incre, ioffl, ioff2,
Jjoffl, joff2, ptal)

call PRNOPl(ku5, 1, 2, incre, ioffl, ioff2,
Jjoffl, joff2, pta2)

call PRNOP1(ku5, 2, 1, incre, ioffl, ioff2,
Jjoffl, joff2, ptcl)

call PRNOPL(ku5, 2, 2, incre, ioffl, ioff2,
joffl, joff2, ptc2)

call PRNOPL(ku5, 2, 3, incre, ioffl, ioff2,
Jjoffl, joff2, ptc3)

call PRNOP1 (ku5, 3, 9, incre, ioffl, ioff2,
joffl, joff2, ptat)

call PRNOP1(ku5, 4, 9, incre, ioffl, ioff2,
joffl, joff2, ptct)

call PRNOPL(ku5, 5, 9, incre, ioffl, ioff2,
Jjoffl, joff2, ptst)

call PRNOPL(ku2, 6, 9, incre, ioffl, ioff2,
Jjoffl, joff2, spst)

call PRNOP1 (ku2, 5, 9, incre, ioffl, ioff2,
joffl, joff2, ptst)

write (ku6, 520)

520 format (/2X, 'No.of vehicles simulated')

call PRNOP2(ku6, 1, incre, ioffl, ioff2, joffl,
joff2, mar)

call PRNOP2(ku6, 2, incre, ioffl, ioff2, joffl,
joff2, mal)

call PRNOP2 (ku6, 5, incre, ioffl, ioff2, joffl,
Jjoff2, mcll)

call PRNOP2 (ku6, 6, incre, ioffl, ioff2, joffl,
joff2, merl)

call PRNOP2 (ku6, 7, incre, ioffl, ioff2, joffl,
joff2, mcl2)

call PRNOP2 (ku6, 8, incre, ioffl, ioff2, joffl,
joff2, mer2)

call PRNOP2 (ku6, 9, incre, ioffl, ioff2, joffl,
joff2, mel3)

call PRNOP2 (ku6, 10, incre, ioffl, ioff2,
joffl, joff2, mcr3)

call PRNOPZ(ku2, 99, incre, ioffl, ioff2,
Jjoffl, joff2, mwu)

endif

stop
ed

*xkkk *kk Kk KhKh % % oKk LA *hkkkhkxnkhk

F*kk ke ok GURROUTINES* %* %k %* %Kk *k

* ThREAAEA kKT hdhddhikx dokodek

subroutine RIGHTL(j1, nvol, dist, iveh, speed,
jdg, mult, icl, lgi, kul, arrr2, carrl2, m,
ml, ma, ntg, jvol, imgl, ki2, ki3, jo, nr,
at2, arrl, depl, arr2, dep2, arr3, dep3, i,
k1, k2, k3, ig, ir, nc, ne, ng, iqi2, igi3,
gs2, gs20, ng2, ng3, ncyl, ncy2, ncy3, nka,
nkal, isp, isp0, mua, nual, dtua, dtual,
suts, sutsO, igs, igs0, gsi, gsi0, ngs,
nas0, rgs2, rgs20, nig, nigl, dtig, dtiqo,
nux, max0, dtux, dtux0, jac, tuz, dtuz,
Jwhl, jwh2, jwh3, ng2i, muzjl, dtuzjl, n,
iup, igt, gst, ige, igea, nii, nii0, iqri,

134

gsti, ngst, rast, jor, mge2, sutss, isps,
nkas, ismt, nibi, nibj, ixtl, ixt2, ixt3,
icy, st, stl, nac, noff, krt3, krxl, irs,
edep3, jdum, dvl, &2, dy3, jvar)

¢ processes vehicles in the right arterial lane

dimension arrl(0:1500), depl(0:1500),
arr2(0:1500)

dimension dep2{0:1500), arr3(0:1500),
dep3 (0:1500)

dimension arrr2(0:500), carrl2 (0:500),
edep3(0:1500)

dimension ki2(0:1500), ki3 (0:1500), zz{(0:100),
zsut (0:100)

dimension dist(20), iveh(20), ir(20), ig(20),
irs(20)

dimension gs2(100), gs20(100), gst(100),
gsti(100)

dimension nka(100), nka0(100), nkas(100)

dimension gsi(100), @si0(100), rgst(100)

dimension suts(0:100, 0:60), suts0(0:100, 0:60)

dimension rgs2(100), rqgs20(100), sutss(0:100,
0:60)

dimension tuz(15), dtuz(15)

dimension ma(15), st(15), st1(15), noff(20)

dimension dy1(0:60), dv2(0:60), dy3(0:60)

C--—- Arrival time at intersection 1 ----—-—
C

do 100 m = ma(jl) ,ma(jl)ntg
if(ig(2).ge.ismt) jvol = jvol + 1
if(m.eq.1) st0 = 0.0

if(ixtl.eq.1) go to 145
if (ixt2.eq.l.and.imgl.ne.1) go to 150
if(ixt3.eq.1) go to 151

ki2(m) = 0

ki3(m) = jo
IF(nr.eq.0) then
arrl(m) = 2.0 * (m~i)
C

C--—- Departure time at intersection 1---

C

i = 14

Jjwh = jwhl

¢ juwh: indicates intersection position (used
before DEPQLS)

call DERQLS(k1, ig(l), ir(l), zz, depl, m, icl,
arrl, nc, arr2, dep2, igi2, gs2, ki2, ng2,
ncyl, iveh(l), zsut, nka, isp, nua, dtua,
suts, igs, gsi, ngs, rgs2, nig, dtiq, jdg,
mx, doux, icx, jwh, jac, ixtl, tuz, dtuz,
0, j1, 14, st, stl, ja&m, &1, jvar)

iex =0

if(imgl.eq.1) then

imgl = 0

jor = 0

call UPDATE(ne, k2, ig(2), ir(2), zz, dep2, m,
icl, ncy2)

k=k -1

endif

if(ixtl.eq.1) go to 110
145 if(ixtl.eq.l) ixtl = 0
Cc

C--- Arrival time at intersection 2 -———--

C

ELSEIF (iup.eqg.1l) then

arrl{m) = parrl

depl(m) = pdepl

nr =0

iw =20

ige = 0

igea = 0

ELSE

arrl(m) = parrl

depl (m) = pdepl

ENDIF

if (imgl.eqg.l) then

imgl = 0

jor = O

call UPDATE(ne, k2, ig(2), ixr(2), zz, dep2, m,
icl, ncy2)

RR=k -1

endif

icx = 79

call ARRQIA(arr2, dep2, arrl, depl, m, nc,
dist (1), speed, at2, arrr2, i, n, nr, iup,
ki2, ngRi, igt, gst, ige., igea, iveh(l),
icx, nka, isp, suts, nii, igti, gsti, niqg,
dtig, ngst, rgst, jdg, armp, icw, jac,jdum,
Jvar)

icx =0

if{depl(m).gt.ir(1)+icl) then

call UPDATE(nc, k1, ig(l), ir(l), zz, depl, m,
icl, ncyl)

ixtl =1

nig = 0

go to 110

endif

C

C--- Departure time at intersection 2 -—--

C

jwh = jwh2

jz2 = 7

call DERQLS (k2, ig(2), ir(2), zz, dep2, m, icl,
arr2, ne, arr3, dep3, iqgi3, gs20, ki3, ng3,
ncy?2, iveh(l), zsut, nkal, ispO, nwao,
dtual, suts0O, igs0, @sil, ngs0, rqs20, nigO,
drig0, jdg, mux0, dtux0, icx, jwh, jac,
ixt2, tuz, dtuz, 0, 13, jz2, st, stl, jdum,
dy2, jvar)

if(ixt2.eq.1) then

jor = 0

endif

mprod = (nual-1) * (nig0-1)

call URNKA(K2, ig(2), ir(2), zz, dep2, m, jdg,
1gi, icl, arr2, ne, ng2i, nag3, ncy2, zsut,
iveh(l), nka, isp, suts, mprod, jac,
tuz,dtuz, nibi, nibj)

C

C--- Arrival time at intersection 3 --—---

C

if(ixt2.eq.1) go to 110

150 if(ixt2.eqg.l) then

ixt2 = 0

kexl = 0

if(tuz(7).gt.ig(2)) then

135

dtuz(7) = tuz(7) - ig(2)
dep2 (m) = tuz(7) + 2.04
dslgi = lgi - dtuz(7)

jveh = iveh(l) * 2
if(dslgi.lt.jveh) nibj = 1
ircll = ir(2)+icl

[

1f(dep2 (m) .ge.ircll) then

call UPDATE(ne, k2, ig(2), ir(2), zz, dep2, m,
icl, ncy2)

call UPDATE(ng, k3, ig(3), ir(3), zz, dep3, m,
icl, ncy3)

nka(isp) = 0

isp = isp + 1

isp0 = isp0 + 1

ixt2 = 1

kt3 =1

kexl = 1

go to 110

endif

endif

endif

Wi n

120 if((nac.eqg.l.and. (k2.eq.2.0r.jdg.eq.
1l.and. (k2.eg.4.0r.k2.eq.5))) .or. (nac.eg.2.a
nd. (k2.eq.2.0r.k2.eq.4.0r.jdg.eq.11.and. (k2.
eqg.5.or.k2.eq.7.or.k2.eq.8.0r.k2.eq.10})))
then

jo=Jjo+ 1

carrl2(jo) = dep2(m)
if(ma(7) .ge.iveh(l)) then
ijor = iveh(1)-(jor+l)
call FINDST(ma(7), edep3, iwveh(l), ijor, st0)
1if(st0.gt.dep2(m)) then
sss = st

ssd = sss - dep2(m)
if(sss.ge.ir(2)+icl) then
imgl = 1

elseif (sed.gt.0) then
mx0 = 1

drux0 = ssd

endif

if(ssd.gt.1lgi-20) nibi = 1
endif

endif

jor = jor + 1

go to 155

endif

1f(Gep2(m).lt.arr2(m)) dep2(m) = arr2(m)

call ARRNT(arr3, dep3, arr2, dep2, m, ne,
dist (2), speed, ng3, jac, jdum,jvar)

C

C--- Departure time at intersection 3 ----

C

Jwh = jwh3

call DEPART(k3, ig(3), ir(3), zz, dep3, m, icl,
arr3, ng, ncy3, jac,ixt3, jdum, dy3, jvar)

mprod = 1

call UPDNKA(k3, ig(3), ir(3), zz, dep3, m, jdq,
lgi, icl, arr3,ng, ng3, 0, ncy3, zsut,
iveh(1l), nka0, isp0, suts0, mprod, jac)

if(ixt3.eq.l) go to 110

151 if(ixt3.eq.l) ixt3 = 0

C

C--- Print arrival and departure time at each
intersection ———=————

C

155 if(nr.ne.0) then
parrl = arrl(m)
pdepl = depl (m)
arrl(m) = 0.

depl (m) = O.

endif

ki3p = jo

if(Gep3 (m).1lt.arr3(m)) dep3(m) = arr3 (m)

if(mult.eq.0) then

call FRINT(arrl, depl, arr2, dep2, arr3, dep3,
kal, m, i, jo, ng2i)

endif

C

if (ncy2.1t.isp) then

do 160 ik = isp,isp

nka({ik) = nka(ik) + 1

160 continue

else

do 161 ik = isp,ncy?

nka(ik) = nka(ik) + 1

161 continue

endif

if(ki3p.ne.ki3(m)) go to 164
if(ncy3.1t.isp0) then
do 162 ik = igp0,isp0
nkal (ik) = nkaO(ik) + 1
162 continue

else

do 163 ik = isp0,ncy3
nkaO(ik) = nkaO(ik) + 1
163 continue

endif

164 continue

if(nr.ne.0) then
arrl (m). = parrl

depl(m) = pdepl

endif

if(imgl.eq.1) go to 110

100 continue

110 ma(jl) =m

if(ig(2).ge.ismt) jvol = jvol - 1

if(imgl.eqg.l.and.ixtl.ne.l.and. ixt2.ne.1.and. ix
t3.ne.l) then

ma(jl) = m+ 1

if(ig(2).ge.ismt) jvol = jvol + 1

endif

returmn

axl

*hkkhhkk

subroutine LEFTL(jl, nvol, dist, iveh, speed,
Jjdg, mult, icl, lgi, ka2, arrl3, carrll, m,
ma, ntg, jvol, img2, img3, ki2l, ki3l, krt2,

136

k1t3, ixtl, ixt2, ixt3, jol, nl, at3, arxrli,
depll, arr2l, dep2l, arr3l, dep3l, ii, ki1,
k21, k31, igl, irl, ncl, nel, ngl, iqgi2l,
igi3l, @s21, gs31, nql2, ngl3, ncyll, ncy21,
ncy3l, nkal, nka2, ispl, isp2, nual, nua2,
dtual, dtua2, sutsl, suts2, igs2, igs3,
agsil, gsi2, ngs2, ngs3, rgs2l, rgs3l, nigl,
nig2, dtigl, dtiqe, mxl, nux2, dtuxi,
drux2, jac, tuz, dtuz, jwhl, jwh2, jwh3,
ngl3i, mzj2, druzi2, m, iupl, igtl, gstl,
igel, igeal, nii2, iqtil, gstil, ngstil,
rgstl, jorl, magel, mge2, sutsr, ispr, nkar,
ismt, carrl3, jo2, nuzj3, dtuzi3, For2,
sutst, ispt, nkat, icz, st, stl, nac, noff,
ko, k2, nux3, dtux3, irr, irt, cdep3,
gdep3, jdum, dyl, dy2, &3, jvar)

C processes vehicles in the left arterial lane

dimension arrl1(0:1500), depll(0:1500),
arx21(0:1500)

dimension dep21(0:1500), arr31(0:1500),
Gep31(0:1500)

dimension cdep3(0:1500), gdep3(0:1500)

dimension arrl3(0:500), carrll(0:500)

dimension ki21(0:1500), ki31(0:1500),
zz(0:100), zsut(0:100)

dimension dist(20), iveh(20), irl(20), 1g1(20),
irr(20), irt(20)

dimension gs21(100), gs31(100), gstl1(100),
qgstil (100)

dimension nkal(100), nka2(100), nkar(100),
nkat (100)

dimension gsil(100), gsi2(100), rgstl(100)

dimension sutsl1(0:100, 0:60), suts2(0:100,
0:60)

dimension sutsr(0:100, 0:60), sutst(0:100,
0:60)

dimension rgs21(100), rgs31(100), carrl3(0:500)

dimension tuz(15), dtuz(15)

dimension ma(15), st(15), stl(15), noff(20)
dimension dy1(0:60), d&y2(0:60), dy3(0:60)

C-——- Arrival time at intersection 1 —--—-
C

do 200 m = ma(jl),ma(31)+ntg
if(igl(2).ge.igmt) jvol = jvol + 1
if(m.eq.1l) st0 = 0.0

if(m.eq.1) st0i = 0.0

if (ixtl.eq.l.and.img2.ne.1) go to 245
1f(ixt2.eq.1) go to 250
if (ixt3.eq.l.and. img3.ne.1) go to 251

ki2l{m) = ii + jol
ki31l(m) = jol
c

IF(nl.eq.0) then

arrll{m) = 2.0 * (m-ii)

C

C-—- Departure time at intersection 1--—-

C

if (img2.eq.1) then

img2 =0

call UPDATE(ncl, k11, igl(l), irl(1), =zz,
depll, m, icl, ncyll)

k11l = k11 - 1

jorl = 0

endif

icx = -2
jwh = jwhi
jz2 = 5

call DEPQLS(k11, igl(l), irl(l), zz, depll, m,
icl, arrll, ncl, arr2il, dep2l, igi2l, gs21,
ki21, ngl2, ncyll, iveh(l), zsut, nkal,
ispl, mual, dtual, sutsl, igs2, gsil, ngs2,
rgs2l, nigl, dtiql, jdg, nuxl, dtuxd, icx,
jwh, jac, ixtl, tuz, dtuz,0, 13, jz2, st,
stl, jdum, dyl, jvar)

icx = 0

if(ixtl.eq.l) then

joxrl =0

endif

if(ixtl.eqg.l) then

if(img3.eq.l) then

im@ =0

call UPDATE(ngl, k31, igl(3), irl(3), =zz,
dep3l, m, icl, ncy31l)

k31 = k31 -1

jox2 = 0

endif

go to 210

endif

245 if(ixtl.eq.l) then

ixtl = 0

if(tuz(5).gt.igl(l)) then

depll (m) = tuz(5) + 2.04

ircll = irl(1)+icl

if(depll{m).ge.ircll) then

call UPDATE(ncl, k11, igl(1), irl(l), zz,
depll, m, icl, ncyll)

call UPDATE(nel, k21, igl(2), irl(2), zz,
dep2l, m, icl, ncy2l)

call UPDATE(ngl, k31, igl(3), irl(3), zz,
dep3l, m, icl, ncy3l)

nkal(ispl) = 0

ispl = ispl + 1

nka2(isp2) = 0

isp2 = igp2 + 1

ixtl =1

krt2 1

k1t3 1

go to 210

endif

endif

endif

C

C---- Arrival time at intersection 2 --—--

C

220 if((nac.eq.l.and. (k1l.eq.2.0r.jdg.eq.
11.and. (kll.eqg.4.or.kll.eq.5))).or.
(nac.eg.2.and. (kll.eg.2.or.kll.eq.4.or.
jdg.eq.1l.and. (kil.eq.5.or.kll.eqg.7.or.
kll.eq.8.0r.kll.eq.10)))) then

jol = jol + 1

carrll{jol) = depll(m)

if ma(5).ge.iveh(1l)) then

ijorl = iveh(l)-(jorl+l)

call FINDST (ma(5), cdep3, iveh(l), ijorl, st0)

"o nn

if(st0.gt.depll{m)) then
sss = st0

ssd = sss - depll(m)
if(sss.ge.irl(1)+icl) then
im2 = 1

elseif (ssd.gt.0) then
mixl =1
dtuxl = ssd

endif

endif

endif

jorl = jorl + 1
go to 255

endif

115 call ARRNIE(arr2l, dep2l, arrll, depll, m,
ncl, dist(1l), speed, ngl2, iveh(l), nkal,
ispl, sutsl, ki2l, jac, jdum, jvar)

icx =0

C

C--- Departure time at intersection 2 ---—-

C

Jwh = jwh2

call DEPQLS(k21, igl(2), irl(2), zz, dep2l, m,
icl, arr2l, nel, arr3l, dep3l, igi3l, gs31,
ki31, ngl3, ncy2l, iveh(l), zsut, nka2,
isp2, nua2, dtua2, suts2, igs3, gsi2, ngs3,
rgs3l, nig2, dcig2, jdg, nux2, dtux2, icx,
jwh, jac, ixt2, tuz, dtuz,0, jl, 14, st,
stl, jdum, &2, jvar)

mprod = (mua2-1)*(nii2-1)* (nig2-1)

call UPDNKA(k21, igl(2), irl(2), zz, dep2l, m,
jda, 1lgi, icl, arr2l, nel, ngl2, nqgl3,
ncy2l, zsut, iveh(l), nkal, ispl,
sutsl, mprod, jac)

if (img3.eqg.1) then

img3 = 0

call UPDATE(ngl, k31, igl(3), irl(3), =zz,
dep3l, m, icl, ncy31)

k31 = k31 - 1

jor2 = 0

endif

C

C--—- Arrival time at intersection 3 ~-——-
C

if(ixt2.eg.1) go to 210
250 if(ixt2.eg.l) ixt2 =0

ELSEIF (iupl.eqg.l) then
arrll{m) = parrll
depll (m) = pdepll
arr2l(m) = parr2l
dep2l(m) = pdep2l

nl =20

iupl =

parrll
pdepll
parr2l
pdep2l

{

[
2228
wononon

ENDIF

if(img3.eq.1) then

impB =0

call UPDATE(ngl, k31, igl(3), iri(3), zz,
dep3l, m, icl, ncy31)

k31 = k31 - 1

jor2 = 0

endif

1f(dep2l(m) .1lt.axr2l(m)) dep2l (m)

C

iex = 32

call ARRQLA(arx31l, dep3l, arr2l, dep2l, m, nel,
dist(2), speed, at3, arrl3, ii, mm, nl,
iupl, k131 ngl3i, igel, gstl, igel, igeal,
iveh(1l), icx, rka2, isp2, suts2, nii2,
igtil, gstil, niq2, dtig2, ngstl, rgstl,
jdg, ammp, icw, jac, jdum, jvar)

= arr2l(m)

icx = 0

C

C--- Departure time at intersection 3 ---—-
c

jwh = jwh3

call DPARTA(K31, igl(3), irl(3), zz, dep3l, m,
icl, arr3l, ngl, ncy3l, Jac, ixt3, jwh, tuz,
dtuz, nux3, dtux3, jdum, 3, jvar, icx)

morod = 1

call UPDNKA(K31, igl(3), irl(3), zz, dep3l, m,
jdq, lgi, icl, arr3l, ngl, nqgl3i, 0, ncy3l,
zsut, iveh(l), nka2, isp2, suts2,mprod, jac)

if(ixt3.eqg.l) jor2 = 0

if(ixt3.eq.1l) go to 210
251 if(ixtB.eq.l) then
ixt3 =

krx1

O
k2 = 0

Inu

if (tuz(9) .gt.igl(3)) then

dep3l(m) = tuz(9) + 2.04

ircll = 1rl(3)+icl

if(dep31l(m) .ge.ircll) then

call UPDATE(ngl, k31, igl(3), irl(3), =zz,
dep3l, m, icl, ncy31)

ixt3

230 if((nac.eqg.l.and. (k31.
1l.and. (k3l.eq.4.0r.k3
.and. (k31.eq.2.0r.k31.
(k31. eq 5.o0r.k31l.eq.6.
9)))) t

jo2 = jo2 + 1

carrl3{jo2) = dep3l(m)

if(m.ge.123) then

endif

(ma(92).ge.iveh(l)) then

138

ijor2 = iveh(1l)-(jor2+1)
call FINDST (ma (9), gdep3, iveh(l), ijor2, stOi)

1f(st0i.gt.dep31(m)) then
sss = st0i

ssd = sss -~ dep3l(m)
if(sss.ge.irl(3)+icl) then

imyd =1

elseif{ssd.gt.0) then

nux3 = 1

dtux3 = ssd

endif

endif

endif

jor2 = jor2 + 1

endif

C

Cmm—mem Print arrival and departure time at
each intersection --——-—=——-

C

255 if(nl.ne.0) then

parrll = arrll(m)

pdepll = depll(m)

parr2l = arr2l (m)

pdep2l = dep2l(m)

arrll(m) = 0.

depll(m) = 0.

arr2l(m) = 0.

dep2l(m) = 0.

endif

ki2lp = ii + jol

ki3lp = jol

if(dep31(m).1lt.arx31(m)) dep3l(m) = arr31 (m)

if(milt.eq.0) then

call PRN(arxll, depll, arr2l, dep2l, arx3l,
dep31, ku2, m, ii,jol, ngl2, ngl3, ngl3i)

endif

if (ki2lp.ne.ki2l(m)) go to 261

do 260 ik = igpl,ncy2l

nkal (ik) = nkal(ik) + 1

260 contimue

261 continue

if(ki3lp.ne.ki3l(m)) go to 266
do 265 ik = isp2,ncy3l
nka2(ik) = nka2(ik) + 1

265 continue

266 continue

C

if(nl.ne.0) then
arrll (m) = parrll
depll(m) = pdepll
arr2l(m) = parr2l
dep2l (m) = pdep2l
endif

(@)

if(impR.eq.1) go to 210
if(img3.eq.1) go to 210
200 contirnue

210 ma(jl) = m
if(igl(z) .ge.ismt) jvol = jvol - 1
(mq2eqlormq3eq1) then
ma(jl) =m+ 1
if(

1g1(2) ge.ismt) jvol = jvol + 1

endif

retum

ad

kKK kK Kk

subroutine findep (dep, mxl)

¢ finds arrival or departure time of previous
vehicle

dimensicon dep{0:1500)

100 if(dep(mxl).eq.0) then

mxl = mxl - 1

if (mxl.le.0) then

mxl = 0

go to 200

endif

go to 100

endif

200 returm

end

Kk dekdkokk

subroutine NOVSIM(dep, mxl, time, novs)

¢ counts the muber of vehicles similated

dimension dep(0:1500)

if(mxl.eq.0) then

novs = 0

go to 200

endif

do 100 ij = mx1,1,~1

if(time.gt.dep(ij) .and.dep(ij).gt.0.1) then

novs = ij

go to 200

endif

if (dep(ij) .gt.time.and.dep(ij-1) .le.time.and.
dep(ij-1).gt.0.1) then

novs = ij - 1

if(ij.eq.0) go to 200

ijs = ij

250 if(dep(ijs).lt.0.01) then

ijs =ijs -1

novs = ijs - 1

go to 250

endif

go to 200

endif

100 cantinue

200 retumn

end

ek kkdhk

subroutine NOVWUP{(depl, dep2, dep3, iwp, novs,
mxl)

¢ counts the mumber of warm-up vehicles

dimension depl(0:1500), dep2(0:1500),
dep3 (0:1500)

if(mxl.eq.0) then

novs = 0

go to 200

endif

do 100 ij = 1,600

if(depl(ij).1t.0.01l.and.dep2(ij).1t.0.01.and.
dep3(ij).1£.0.01) then

novs = ij - 2

go to 200

endif

if(dep2(ij).gt.iwp) then

novs = ij - 1

go to 200

139

endif

100 continue

200 retum

ad

o sk kek kK

subroutine piksrt(n, dep)

¢ sorts n values in ascending order
dimension dep(10)

do 12 j=2,n

a = dep(3)

S 11 i=3-1,1,-1
if(dep(i).le. go to 10

)
dep(i+l) = dep(i)
11 continue
i=0
10 dep(i+l) = a
12 contirue
return
ad
Fkwhhwk
subroutine ARRQIA(arr, dep, arrp, depp, m, nce,
dist, speed, at, arrr, j, n, mmn, iup, ki,
ng, igt, gst, ige, igea, ivehl, icx, nka,
igp, suts, nii, igti, gsti, niq, dtig, ngst,
ragst, jdg, arrmmp, icw, jac,jdum, jvar)

¢ calculates arrival time of a vehicle when
there are tum-~in movements

dimension dep(0:1500), depp(0:1500),
arr(0:1500), arrp(0:1500)

dimension arrx(0:500), ki(0:1500), gst(100),
gsti (100)

dimension nka(100), suts(0:100, 0:60),
rgst (100)

wid = 40.

if(jac.eq.2) wid = 60.

arrrmp = arrr(n)

if(arr(m-1) .eq.dep(m-1) .and.arr(m-1) .ne.0.) nce
=0

ipO =1

¢ ipo: incator to calculate murber of queue in
NOQUE

call NOQUE (arr, dep, 0, arrr, ivehl, ki, m, ml,
ng, n, ige, igea, ipo, 0)

ipo = 0

call FINDEV(m, dep, ivehl, lks, stll)

jsubs = ivehl - 1

call FINDEV(m, dep, jsubs, lks, st2)

IF (ng.ge.ivehl+l.and.arr(m-1) .eqg.arrr(n-1))
then

igt = igt + 1

gst(igt) = arrr(n-1)

dids = abe(depp (m)-stll)

1f(dids.1£.0.001) then

igt = igt - 1

elseif(depp(m) .1t.stll) then

nig = 1

ngst = ngst + 1

igt = igt - 1

rgst (ngst) = arrr(n-1)

dtig = stll - depp(m)

depp (m) = stll

endif

if (arrr(n).eq.0.) go to 110
igea = 1
if(arrr(n).lt.arr(m-1)) igea = 0

call NOQUE(axr, dep, 0, arrr, ivehl, ki, m, ml,
ng, n, ige, igea,ipo, 0)

if(ng.ge.ivehl+l) then

ige=1

arrr(n) = stll + 1.0

if (arrr(n).ge.depp(m)) then

call NEXTTI(n, arrr, iup, nmn, ige, nii, niq)

go to 150

endif

endif

ENDIF

110 if(m.ge.2) nce = ng

des = dist+wid-20.*nce
if{m.eq.l) decs = dist + wid

if (jvar.eq.1l) then

call ranspd(jdum, nce, arrp, depp, des, speed,
ix)

else

call cspeed(m, nce, arrp, depp, speed, dcs,
i)

endif

at = depp(m) + des/speed

intv = int (ivehl*0.3)

nisp = nka(isp)

nispt = nka(isp+l)
IF (nce.ne.0) then

atx = depp(m) + (wid+dist-(nisp-1)*20.)/speed
atxt = depp(m) + (wid+dist-(nispt-1)*20.)/speed

if(nisp.le.ivehl) then

if(arr(m-1).ne.0.0) then

if (arr(m-1) .ne.suts(isp, nka(isp)-1).and.
atx.lt.suts(isp, nka(isp)-1).and.nisp.gt.ng)
then

at = atx

elseif (arr(m-1).eq.suts(isp, nka{isp)-1).and.
atxt.lt.suts(isp+l, nka(isp+l)-1).and.
arr (m-1) .ne.suts(isp+l, nka(isp+1)-1)) then

at = atxt

endif

endif

if(arr(m-1).eq.0.0.and.nisp.gt.ng) then

if (arr(m-2) .ne.suts(isp, nka(isp)-1)) then

at = atx

endif

endif

endif

if (nisp.eq.ivehl+l.and.depp(m) .1t .suts(isp,
nka(isp)-1l). and.ng.ge.intv) then
if (arr(m-1) .ne.0.0.and.axr (m-1) .ne.suts (isp,
nka(isp)-1))then
at = depp(m) + wid/speed
elseif (arr(m-1) .eg.0.0.and.arr (m-
2) .ne.suts(isp, nka(isp)~1)) then

140

at = depp(m) + wid/speed
endif
endif

ENDIF

if (nig.eq.l.and.arrr(n) .ge.depp(m)) go to 130
if (nig.eq.l.and.arrr(n) .ne.0.0) then

call NEXITI(n, arrr, iup, nmn, ige, nii, niq)
go to 150

endif

130 if(arrr(n).lt.depp(m).and.arrr(n) .ne .0.)
then

if (ng.ge.ivehl) then

igea = 1

if(arrr(n).lt.arr(m-1)) igea = 0

call NOQUE(arr, dep, 0, arrr, ivehl, ki, m, mi,
ng, n, ige, igea,ipo, 0)

if(ng.gt.0.and.arrr(n).gt.arr(m-1)) ng = ng - 1

endif

des = dist+wid-20.*nce

if(jvar.eqg.l) then

call ranspd{jdum, nce, arrp, depp, dcs, speed,
icx)

else

call cspeed(m, nce, arrp, depp, speed, dcs,
icx)

endif

1f(20.*nqg.gt.dist) then
arxrr(n) = arrrmp + wid/speed
else

arrr(n) = arrmmp + dos/speed
endif

if(nce.ne.0.and.nisp.gt.ng) then

att = arrmp + (wid+dist-(nisp-1)*20.)/speed

if (nisp.le.ivehl.and.att.lt.suts(isp, nka(isp)-
1) .and.arr (m~1) .ne.suts(isp, nka(isp)-1))
then

if(att.gt.arr(m~1)) then

arrr(n) = att

endif

endif

endif

if (nisp.eq.ivehl+l.and.arrwmp.lt.suts(isp,
nka(isp)-1). and.nqg.ge.intv.and.arr (m—
1) .ne.suts(isp, nka(isp)-1)) then

arrr(n) = arrrnp + wid/speed

endif

if(arrr(n) .lt.arrr(n-1) .and.nmn.eq.0) then

arrr(n) = arrr(n-1) + 1.0

endif

tt = arrrmp + (dist+wid)/30.9

if(mn.eq.0.and.tt.gt.dep(m-1) .and.dep (m-
1).gt.0.1) then

arrr(n) = tt

endif

ELSE
go to 150

ENDIF

if(nii.eqg.l.and.arrr(n) -1lt.stll) then
arrr(n) = stll

if(arrr(n).ge.depp(m)) then

call NEXITI(n, arrr, iup, nmn, ige, nii, niqg)
go to 150

endif

go to 151

endif

if(ige.eq.l) then

arrr(n) = arrr(n-1) + 1.0

ige =0

if(arxrr(n) .ge.depp(m)) then

call NEXTTI(n, arrr, iup, nmn, ige, nii, niq)
go to 150

endif

endif

151 if(arrr(n).lt.arr(m-1l) .and.arrr(n).lt.at)
then

arrr(n) = arrr(n-1) + 1.0

if(arrr(n).lt.arr(m-1) .and.arxr(n).lt.at) then

call NEXTTI(n, arrr, iup, mm, ige, nii, niqg)

endif

endif

igea = 1

if(arrr(n) . lt.arr(m-1)) igea = 0

call NOQUE(arr, dep, 0, arrr, ivehl, ki, m, ml,
ng, n, ige, igea, ipo, 0)

if(ng.gt.0.and.arrr(n).gt.arr(m-1)) ng =ng - 1

if(m.ge.2) nce = ng

at = deppim) + (dist+wid-20.*nce)/speed

if(20.*nce.gt.dist) at = depp(m) + wid/speed

if(at.lt.arr(m-1)+1.0) at = arr(m-1) + 1.0

IF(at.ge.arrr(n) .and.arr (m-1) .le.arrr(n)) then

if (nka(isp).eq.ivehl+l.and.arrr(n).lt.st2-
1.1l.and.arr(m-1) .ne.suts{isp, nka(isp)-1))
then

if (ng.eqg.ivehi+l) go to 160

if (arrr(n) .1t .dep (m-1ks+1)) go to 160

if{suts(isp, nka(isp))-arrr(n).lt.jdg) go to
170

igti = igti + 1

gsti(igti) = arrr(n)

170 nii = 1

160 if(depp(m).lt.st2.and.arr(m-1) .ne.suts(isp,
nka(isp)-1)) then

if (suts(isp, nka(isp))-arrr(n).lt.jdq) go to
190

ngst = ngst + 1

if(igti.gt.0) igti = igei - 1

rgst (ngst) = arrr(n)

190nig =1

dtig = suts{isp, nka(isp)) - depp(m)

depp(m) = suts(isp, nka(isp))

endif

endif

if (nka(isp) .eq.ivehl+2.and.arrr(n) .lt.st2-
1.1.and.arr(m-1).ne.st2-1.1) then

arrr(n) = st2-1.1

if(st2-1.1.eq.depp(m))then

141

call NEXTTI(n, arrr, iup, nmn, ige, nii, niqg)
go to 150

endif

nii = 1

if(arrr(n).ge.deppim)) then

call NEXTTI(n, arrr, iup, nmn, ige, nii, niqg)
go to 150

endif

endif

mn = ron + 1

j=3j+1

nce = nce + 1

at = depp(m) + (dist+wid-20.*nce) /speed
if(20.*nce.gt.dist) at = depp(m) + wid/speed

Y-

if(ng.ge.ivehl+l) then

igea =1

call NOQUE({axr, dep, 0, arrx, ivehl, ki, m, ml,
ng, n, ige, igea,ipo, 0)

if (ng.ge.ivehl+l) then

ige=1

arrr(n) = stll + 1.0

if (arrr(n) .ge.depp(m)) then

mn =nm - 1

ij=3-1

nce = nce - 1

call NEXTTI(n, arrr, iup, rmmn, ige, nii, niqg)
go to 150

endif

else

arr (m+l) = arr(m)

endif

arr{m) = arrr(m)
n=n+1

diff = arrr(n) - arrrmmp

if(Qiff.gt.25.0) iup =1
if{arrr(n).eqg.0.) iup =1
ELSE

150 arr(m) = at

nii =0
nce = nce + 1
ENDIF

if(arr(m).le.arr(m-1) .and.arr(m).gt.0.) then
arr(m) = arr(m-1) + 1.0
endif

mi0 =m-1

call findep(arr, ml0)
if(arr(m).lt.arr(@ml0)+0.5) then
arr(m) = arr(ml0) + 0.5

endif

return

ad

*dkkkkk

subroutine NOQUE (arr, dep, depp, arrr, ivehl,
ki, m, ml, ng, n, ige,igea, ipo, jgt)

¢ countes the mumber of queued vehicles.

dimension arr(0:1500), dep(0:1500),
depp (0:1500)

dimension ki(0:1500), arxr(0:500)

ki(0) =0

if(m.gt.l) then

ml=m-1

time = arr(ml)

if(ipo.eq.19) time = depp(m)

na = mt

if(ige.eqg.l.or.igea.eq.1) then

if(ipo.eq.0) then

time = arrr(n)

na =m

endif

110 if(arr(ml).eq.0) then

ml =ml - 1

if(ipo.ne.19) time = arr(ml)

na = ml
if(ipo.eq.9.and.nqg.ge.ivehl+1) then
jgt =

go to 110

endif
if(ipo.eq.10) then
time = arr(m)

na =m
endif
if(ipo.eq.29) then
time = dep(m)
na=m-1

endif

if(dep(ml).le.time.and.dep(ml) .ne.0) then

nd = ml

go to 200

endif

do 300 ij = 0,ml-1

if(dep(ij+1) .gt.time.and.dep(ij).le.time) then

nd = ij

if(ij.eq.0) go to 200

ijs = i3

250 if(dep(ijs).eqg.0.) then

ijs = ijs - 1

nd = ijs

go to 250

endif

go to 200

endif

300 continue

200 ng =na - ki(na) - (nd - ki(nd))

100 continue

endif

retum

ad

Fkkkkkk

subroutine NEXTTI(n, arrr, iup, nmn, ige, nii,
niq)

¢ finds the next available turn-in vehicle

dimension arrr(0:500)

ilocp = 0
100mp =n
200n=n+1

iloop = iloop + 1
if(iloop.gt.30) then

142

write(10, *) 'stopped by endless go to (in

NEXTTI)', 'nm, np,arrr(n), arrr(np)', n, np,
arrr(n), arrr(np)

stop

endif

if{arrr(n).eq.0.0) go to 300

if (arrr(n).lt.arrr(mp)) go to 200
diff = arrr(n) - arrr(np)
if(df£f.16.25.) go to 100

300 iwp = 1
mn = 0
ige = 0
nii = 0
nig = nig
return

exd

Kk khdkk

subroutine DEPART(k, ig, ir, z, dep, m, icl,
arr, nce, ncy, jac, ixt,jdum, dphy, jvar)

¢ calculates vehicle departure times

dimension z(0:100),dep(0:1500), arr(0:1500)

dimension zsut(0:100), dohy(0:60)

k=k+1

call DPHDWY (z, zsut)

if(jvar.eq.l.and.k.eq.l.or.k.eq.2) then

call nordev(jdum, doly, icx)

endif

ircl = ir + icl*(2-jac)

if (arr(m).le.ircl) then

if(jvar.eq.0) then

dep(m) = z(k) + ig

else

dep(m) = dohy(k) + ig

endif

if(dep(m) .gt.ircl)then

call UPDRTE(nce, k, ig, ir, z, dep, m, icl,
ncy)

ixt =1

endif

if(arr(m).ge.dep(m)) dep(m) = arr(m)

elseif (arr(m) .gt.ircl) then

call UPDRTE(nce, k, ig, ir, z, dep, m, icl,
ncy)

ixt = 1

if(arr(m).ge.dep(m)) dep(m) = arr(m)

endif

ml0=m-1

call findep(dep, ml0)

if(dep(m) .1t.dep(ml0)+0.7) then
dep(m) = dep(mil) + 0.7

endif

ircl = ir + icl*(2-jac)
if(k.gt.2.and.arr(m-1) .eq.dep(m-1) .and.arr (m~
1) .gt.l.and.
arr(m).gt.ig.and.arr (m) .le.ircl) then
dep(m) = arr(m)
endif

if(dep(m).gt.ircl) then
call UPDRATE(nce, k, ig, ir, z, dep, m, icl,

ney)
bxt =1

endif

return

ad

EX 3T s

subroutine DPARTA(k, ig, ir, z, dep, m, icl,
arr, nce, ncy, jac, ixt,jwh, tuz, dtuz, nux,
dtux, jdum, dohy, jvar, icx)

¢ calculates vehicle departure times

dimension z(0:100), dep(0:1500), arr{0:1500)

dimension zsut(0:100), tuz(15), dtuz(is),
dehy (0:60)

k=k+1

call DPHIWY (z, zZsut)

if(jvar.eqg.l.and.k.eg.l.or.k.eq.2) then

call nordev(jdum, dohy, icx)

endif

ircl = ir + icl*(2-jac)

if(arr(m).le.ircl) then

if(jvar.eq.0) then

dep(m) = z(k) + ig

else

dep(m) = dply (k) + ig

endif

if (mux.eqg.l) dep(m) = dep(m) + dtux
if(tuz(9) .gt.ig.and.jwh.eq.22) then

dep(m) = dep(m) + dtuz(9)

endif

if(dep(m).gt.ircl)then

call UPDATE(nce, k, ig, ir, z, dep, m, ici,
ney)

mx = 0

ixt =1

endif

if(arr(m) .ge.dep(m)) depim) = arr(m)

elseif(arr(m).gt.ircl) then

call UPDATE(nce, k, ig, ir, z, dep, m, icl,

ncy)
mux = 0
ixt =1
if(arr{m).ge.dep(m)) dep(m) = arrm)
endif
mi0 =m -1

call findep(dep, ml0)

if (dep(m) .1t.dep(ml0)+0.7) then
dep(m) = dep(ml0) + 0.7

endif

ircl = ir + icl*(2-jac)

if(k.gt.2.and.arr (m-1) .eq.dep (m-1) .and. arr (m-
1).gt.l.and.
arr(m).gt.ig.and.arr(m).le.ircl) then

dep(m) = arr(m)

endif

if(dep(m).gt.ircl) then
call UPDATE(nce, k, ig, ir, z, dep, m, icl,
ncy)

0
1

i on

nuax
ixt
endif
retum
ed

kR dkkkhk

143

subroutine UPINKA(k, ig, ir, z, dep, m, jdq,
lgi, icl, arr, nce, nq, ngd, ncy, zsut,
ivehl, nka, isp, suts, mprod, jac)

¢ updates rka

dimension z(0:100),dep(0:1500), arr(0:1500)

dimension zsut (0:100)

dimension nka(100), suts(0:100, 0:60)

ircl = ir+icl*(2-jac)

if (nad.ge.ivehl+l) go to 100

if (mprod.eq.0) go to 100

if(ng.eq.0.and.arr(m) .gt.ig.and.arxr(m) .le.ircl)
then

dep(m) = arr(m)

endif

100 intv = int (ivehl*0.3)

if (suts(isp, nka(isp)).lt.arr(m)) then

suts{isp, rka(isp)) = arxr(m)

endif

if (suts(isp, nka(isp)).gt.dep(m)) then

suts(isp, nka(isp)) = dep(m)

endif

if (nka(isp) .ge.intv.and.arr(m) .gt.suts(isp,
nka(isp)-1))then

suts(isp, nka(isp)) = arr(m)

endif

c

if(m.gt.l.and.isp.le.2) then

if (dep(m-1) .ne.0.and.arr(m-1) .ne.0.and.dep (m~
1) .eqg.arr(m-1) .and.dep(m) .ne.arr{m)) then

nka(isp) = 0

isp = isp + 1

endif

endif

if((Jdg.eq.7.and.1gi.ge.30) .or. (jdg.eq.9.and. 1g
i.ge.50).or. (jdg.eq.1l.and.1lgi.ge.70)) then

isp = ncy

else

if (nka(isp).ge.ivehl+6) then

nka(isp) = 0

isp = isp + 1

endif

endif

if(m.le.6.and.ncy.gt.isp) isp = ncy

i) =m-1

call findep(dep, ml0)

if (dep () .1t .dep(ml0)+0.7) then
dep(m) = dep(ml0) + 0.7

endif

if(dep(m).gt.ircl) then

call UPDATE(nce, k, ig, ir, z, dep, m, icl,
ncy)

endif

retum

end

Fdhkdhkkk .

subroutine UPNKA(k, ig, ir, z, dep, m, jdg,
lgi, icl, arr, nce, ng, ngd, ncy, zsut,
ivehl, nka, isp, suts, mprod, jac, tuz,dtuz,
nibi, nibj)

¢ updates nka

dimension z{0:100),dep{0:1500), arr(0:1500)

dimension zsut(0:100), tuz(1l5), dctuz(15)

dimension nka(100), suts(0:100, 0:60)

ircl = ir+icl*(2-jac)

if (ngd.ge.ivehl+l) go to 100

if (mprod.eq.0) go to 100

if(ng.eq.0.and.arr(m) .gt.ig.and.arr (m) .le.ircl)
then

dep(m) = arr(m)

endif

100 intv = int(iveh1*0.3)

if(suts(isp, nka(isp)).lt.arr(m)) then

suts(isp, nka(isp)) = arr(m)

endif

if (suts(isp, nka(isp)).gt.dep(m)) then

suts(isp, rka(isp)) = dep(m)

endif

if (nka(isp) .ge.intv.and.arr (m) .gt.suts (isp,
rka(isp)-1))then

suts(isp, nka(isp)) = arr(m)

endif

c

if(m.gt.l.and.isp.le.2) then

if(dep(m-1) .ne.0.and.arr (m-1) .ne.0.and.dep (m-
1) .eg.arr(m-1) .and.dep(m) .ne.arr(m)) then

nka(isp) = 0

isp=isp + 1

endif

endif

if(tuz(8).gt.ig) dtuz(8) = tuz(8) - ig

if (tuz(8).gt.ig.and.lgi.ge.40.and.dtuz(8) .gt.1g
i-20.and. nibi.ne.l) then

nibi = 1

endif

if (nibi.ne.l.and.nibj.ne.1) then

if((jdg.eq.7.and.lgi.ge.30) .or. (jdg.eq.9.and.lg
i.ge.50).or.(jdg.eq.1l.and.1gi.ge.70)) then

isp = ncy

else

if (nka(isp).ge.ivehl+6) then

nka(isp) = 0

isp = isp + 1

endif

endif

elseif (nibi.eqg.l.or.nibj.eq.1l) then

if (nka{isp).ge.ivehl+3) then

nka(isp) = 0

isp = isp + 1

endif

endif

if(m.le.6.and.ncy.gt.isp) isp = ncy

if(dep(m) .gt.ircl) then

call UPDATE(nce, k, ig, ir, z, dep, m, icl,
ney)

endif

return

end

*k A EIKK

subroutine DPHDWY(z, zsut)

¢ stores departure headway and the time queued
vehicles start moving forward when the
signal tums green

dimension z(0:100), zsut (0:100)

z(0) = 0.

144

z(1) = 2.04
z{2) =4.50
z(3) = 6.62
do 100 n = 4,100

z(n) = 1.34 + 1.82 *n
100 continue

zsut (0) = O.

zsut(l) = 2.04
zsut (2) = 2.75
2sut (3) = 3.46

do 200 n = 4,100
zsut(n) = 1.1 *n
200 continue
return
end
kKKK KK
subroutine ARRNT (arr, dep, arrp, depp, m, nce,
dist, speed, ng, jac, ja&m , jvar)
¢ calculates arrival time of a vehicle when
there are no turn-in movements
dimension dep(0:1500), depp(0:1500),
arr(0:1500), arrp(0:1500)
wid = 40.
if(jac.eq.2) wid = 60.
if{arr(m-1) .eq.dep(m-1) .and.arr (m-1) .ne.0.) nce
=0

if(m.ge.2) nce = ng
des = dist+wid-20.*nce

if(jvar.eq.1l) then

call ranspd(jdum, nce, arrp, depp, dcs, speed,
icx)

else

call cspeed(m, nce, arrp, depp, speed, dcs,
icx)

endif

arr(m) = depp(m) + dcs/speed

if(20.*nce.gt.dist) arr(m) = depp(m) +
wid/speed

nce = nce + 1

if(arr(m).le.arr(m-1) .and.arr(m) .gt.0.) then
arr(m) = arr{m-1) + 1.0
endif

ml0=m-1

call findep(arr, mlo)

if(arr(m).lt.arr(mi0)+0.5) then

arr(m) = arr(ml0) + 0.5

endif

return

ad

dkdkkhk

subroutine DEPQLS(k, ig, ir, z, dep, m, icl,
arx, nce, arrd, depd, iq, gs, ki, ng, ncy,
ivehl, zsut, nka, isp, mua, dtua, suts, iqs,
gsi, ngs, rgs, nig, dtiq, jdg, nux, drux,
icx, jwh, jac, ixt, tuz, dtuz, ijk, jzl,
jz2, st, stl, jdum, dphy, jvar)

¢ calculates vehicle departure times and

includes an option that delays departure IF(arr{m).le.ircl) then

when a queue spillback occurs if (ng.ge.ivehl+l) then
dimension dep(0:1500), arr(0:1500), if (jvar.eq.0) then

depd (0:1500), arrd(0:1500) depm = z(k) + ig
dimension ki (0:1500), suts(0:100, 0:60), else

nka (100) depm = Oply (k) + ig
dimension z(0:100), zsut(0:100), dphy(0:60) endif
dimension gs(100), gsi(100), rgs(100) dep(m) = stll
dimension tuz(15), dtuz(15), st(15), stl(15) ig=ig+ 1
Ipdl = (Jwh-10)* (Jwh~21) * (Fwh-30) * (Jwh- gs(ig) = arrdiml)

40) * (jwh~50) if(stll.gt.ircl) then
Jpd2 = {(jwh-11)* (Jwh-20)* (jwh-32) * (jwh-42) if(jib.eg.0.and.jpdl.eq.0) then
if(m.eqg.l) then jib=1
mwa = 0 tuz(jzl) = stll
ki(0) =0 dtuz(jzl) = tuz(jzl) - irclp
endif endif
k=k+1 ngs = ngs + 1
call DPHIWY (z, zsut) rgs (ngs) = arrd(ml)
if(jvar.eq.l.and.k.eq.l.or.k.eq.2) then ig=ig-1
call nordev(jdum, dphy, icx) igel = ig + icl
endif if(dep(m).gt.igcl) then
jgt = 0 call UPDATE(nce, k, ig, ir, z, dep, m, icl,
ipo = 9 ncy)
call NOQUE(axrrd, depd, 0, 0, ivehl, ki, m, nd, call UPDATL (mux, nig, nua)

ng, 0, 0, 0, ipo, jgt) dtux = stll - ig - 2.05
call FINDEV(m, depd, ivehl, lks, stll) if(dtux.gt.icl) then
call FINDEX(m, depd, ivehl, lks, st, jzl) 260 call UPIATE (nce, k, ig, ir, z, dep, m, icl,
call FINDEX (m, depd, ivehli+l, 1lks, stl, jzl) ncy)

dtux = dtux - icl
jib =0 if (dtux.gt.icl) go to 260
if(jgt.eq.1) go to 290 endif
ircl = ir + icl*(2-jac) mx =1
irclp = ir + icl*(2-jac) ixt =1
dep(m) = stll

if (m.gt.ivehi+l.and.ng.le.ivehl.and.arrd (m- go to 500

1) .ne.0..and. stll.gt.arrd(m-1)+4.)then endif
dep(m) = stll call UPDATE(nce, k, ig, ir, z, dep, M, icl,
if(stli.gt.ircl) then ncy)
if(jib.eq.0.and.jpdl.eq.0) then call UPDATI (nux, nig, nua)
jib = 1 ixt = 1
tuz(jzl) = stll go to 389
dtuz(jzl) = tuz(jzl) - irclp endif
endif mx =1
igel = ig + icl dtux = dep(m) - depm
if(dep(m).gt.igcl) then go to 500
call UPDATE(nce, k, ig, ir, =z, dep, m, icl, endif

ney) 290 if(jvar.eq.0) then
call UPDATL (mmx, nig, nua) dep(m) = z(k) + ig
dtux = stll - ig - 2.05 else
mx = 1 dep(m) = dohy (k) + ig
ixt = 1 endif
dep(m) = stll
go to 500 if (nig.eq.l) dep(m) = dep(m) + dtig
endif . if (ux.eq.l) dep(m) = dep(m) + dtux
call UPDATE(nce, k, ig, ir, z, dep, M, icl, if(tuz(jz2) .gt.ig.and.jpd2.eq.0) then

ncy) if(ijk.eg.l.and.ncy.eg.1) go to 389
call UPDATL (mux, nig, rua) 1f (nux.eqg.l.and.tuz(jz2) .1t.stll)go to 389
ixt = 1 dep(m) = dep(m) + dtuz(jz2)
go to 500 endif
endif 389 continue
ma =1 ELSETF (arr(m) .gt.ircl) then
dtua = stll - arxd(m-1) if(ng.ge.ivehl+l) then
go to 490 ig=ig+ 1
endif gs(ig) = arrd(ml)

145

if(stll.gt.ixcl) then

if(jib.eq.0.and.jpdl.eq.0) then
jib=1

tuz(jzl) = stll

dtuz (jzl) = tuz(jzl)

endif

ngs = ngs + 1

rgs({ngs) = arrd(ml)

ig=ig -1

igel = ig + icl

if(stll.gt.igel) then

call UPDATE(nce, k, ig, ir, z, dep, m, icl,
ncy)

call UPPATL (nux, nig, nua)

dtux = stll - ig - 2.05

if(dtux.gt.icl) then

call UPDATE(nce, k, ig, ir, z, dep, m, icl,
ney)

dtux = dtux - icl

endif

mx = 1

it = 1

dep(m) = stll

go to 500

- irclp

call UPDATE(nce, k, ig, ir, z, dep, m, icl,
ncy)

call UPDATL (nux, niqg, nua)

ixt = 1

ENDIF

if(nua.eg.1) dep(m) = dep(m) + dtua

ircl = ir + icl*(2-jac)

irclp = ir + icl*(2-jac)

IF(nka(isp) .eq.ivehl+2.and.ng.le.ivehl) then

if(m.ge.ivehl+l.and.arrd(ml) .ne.suts (isp,
nka(isp)-1l)) then

if(arrd(ml).lt.suts({isp, nka(isp)-2)) then

if(arrd(m-1) .eq.0.and.dep(m-1) .ne.0) go to 410

if (suts(isp, nka(isp)-1) - arrd(ml).lt.jdg) go
to 410

igs = igs + 1

gsi(igs) = arrd(ml)

endif

410 continue

if(dep(m) .1lt.suts(isp, nka(isp)-1)) then

ma = 1

if (suts(isp, nka(isp)~-1).gt.ircl) then

if(jib.eqg.0.and.jpdl.eq.0) then

jib=1

tuz(jzl) = stll .
druz (jz1) = tuz(jzl) - irclp
endif

if(suts(isp, nka(isp)-1) - arrdml).lt.jdq) go
to 420

ngs = ngs + 1

rgs(ngs) = arrd(ml)

if(igs.gt.0) igs = igs - 1

igel = ig + icl

if(stll.gt.igcl) then

call UPDATE(nce, k, ig, ir, z, dep, m, icl,
ncy)

call UPDATI (nux, nig, mua)

dtux = stll - ig - 2.05

146

mx = 1

ixt = 1

dep(m) = stll

go to 500

endif

420 continue

endif

dtua = suts(isp, nka(isp)-1) - dep(m)
dep(m) = suts{isp, nka(isp)-1)
endif

endif

ENDIF

1rcl = ir + icl*(2-jac)
f(k.gt.2.and.arr(m-1) .eq.dep (m-1) .and.arr (m~
1).gt.l.and.
arr(m).gt.ig.and.arr (m).le.ircl) then

dep(m) = arr(m)

endif

490 if(arr{m).ge.dep(m)) dep(m) = arr(m)

ml0=m-1

call findep(dep, ml0)

if (dep(m) .1t .dep(ml0)+0.7) then
dep(m) = dep(ml0) + 0.7

endif

if(dep(m).gt.ircl) then

call UPDATE(nce, k, ig, ir, z, dep, m, icl,
ny)

call UPDATL(nux, niqg, nua)

ixt =1

endif

igel = ig + icl

ircl = ir + icl*(2-jac)

if(jgt.eq.l.and.stll.gt.dep(m)) then

if(stll.gt.ircl) then

if(jib.eq.0.and.jpdl.eq.0) then

jib =1

tuz(jzl) = stil

dtuz (jzl) = tuz(jzl) - ircl

endif

if(dep(m).gt.igecl) then

call UPDATE(nce, k, ig, ir, z, dep, m, icl,
ney)

call UPDATI(nux, niqg, nua)

dtux = stll - ig - 2.05

] lI

1

1

dep(m) = stll

go to 500

endif

call UPDATE(nce, k, ig, ir, z, dep, M, icl,
ny)

call UPDATL (nux, niqg, nua)

ixt = 1

dep(m) = stll

go to 500

endif

dep(m) = stll

endif

if(jot.eg.l.and.ng.ge.ivehl+l.and.st(jzl) .gt.ig
cl) then

if(jib.eqg.0.and.jpdl.eq.0) then

tuz(jzl) = st(jzl)

dtuz(jzl) = tuz(jzl) - ircl

endif

endif

500 continue

return

ed

*kkkK KK

subroutine FINDEV(m, depd, ivehl, lks, stll)

¢ calculates when the (m-(ivehl+l))th vehicle
in the downstream link starts moving forward
(ivehl = link capacity in mmber of

vehicles).
i ion depd(0:1500)
ki =0

if(m.gt.ivehl) then

do 100 1k = 1,99

if (depd(m-1k) .eq.0.or.depd (m-
1k) .ne.0.and.depd (m-1k) .eq.depd (m-1k-1))
then

1kl = 1k: + 1

endif

if(lk-1kl.eq.ivehl+1) then

lks = 1k

go to 110

elseif (m-1k.eqg.1) then

stll = 0.

go to 120

endif

100 continue

110 stll = depd(m-1lks) - 2.04 + (ivehl+1)*1.1

endif

120 return

ad

*kkkhkEk

subroutine FINDST(m, depd, ivehl, kv, stll)

¢ calculates when the (m-(kv+l))th vehicle in
the downstream link starts moving forward

dimension depd(0:1500)

K1 =0

if (m.gt.ivehl) then

do 100 1k = 1,99

1f (depd(m-1k) .eq.0.0r.depd (-
1k) .ne.0.and.depd (m~1k) .eq.depd (m-1k-1))
then

1kl = 1kl + 1

endif

if(1k-1kl.eq.kv+l) then

ks = 1k

go to 110

elseif (m-1lk.eqg.1l) then

stll = 0.

go to 120

endif

100 continue

110 stll = depd(m-lks) - 2.04 + (ivehl+1)*1.1

endif

120 returm

ad

*xkkkKxKE

147

subroutine FINDEX (m, depd, ivehl, lks, st, j1)

¢ calculates when the (m-ivehl)th vehicle in
the downstream link starts moving forward
i ion depd(0:1500), st(15)

k1l =0

if (m.ge.ivehl) then

do 100 1k = 1,99

if (depd(m-1k) .eq.0.or.depd (m~
1k) .ne.0.and.depd (m-1k) .eqg.depd (m-1k-1))
then

1kl = 1x1 + 1

endif

if (1k-1kl.eqg.ivehl) then

ks = 1k

go to 110

elseif (m-1k.eq.1) then

st(j1) = 0.

go to 120

endif

100 continue

110 st(j1l) = depd(m-lks) ~ 2.04 + (ivehl)*1.1

endif

120 returm

ed

%k k ke dok

subroutine ARRNIE(arr, dep, arrp, depp, m, nce,
dist, speed, ng, ivehl, nka, isp, suts, ki,
jac, jduam, jvar)

¢ calculates arrival time of a vehicle when
there are no turm-in movements

dimension dep(0:1500), depp(0:1500),
arr(0:1500), arxrp(0:1500)

dimension ki(0:1500), nka(100), suts(0:100,
0:60)

wid = 40.

if(jac.eq.2) wid = 60.

if (nce.eq.0) then

call NOQUE(axr, dep, depp, 0, ivehl, ki, m, O,
ng, 0, 0, 0, ipo, 0)

endif

if (arr(m-1) .eq.dep(m-1) .and.arr(m-1) .ne.0.) nce

if(m.ge.2) nce = ng
decs = dist+wid-20.*nce

if(jvar.eq.l) then

call ranspd(jdum, nce, arrp, depp, dcs, speed,
icx)

else

call cspeed(m, nce, arrp, depp, speed, dcs,
icx)

endif

arr(m) = deop(m) + des/speed

if(20.*nce.gt.dist) arr(m) = depp(m) +
wid/speed

intv = int(ivehl*0.3)

nisp = nka(isp)

if(nce.ne.0) then
atx = depp(m) + (wid+dist-(nisp-1)*20.)/speed

non

if(nisp.le.ivehl.and.atx.1lt.suts(isp, nka(isp)-
1) .and.arr(m-1) .ne.suts(isp, nka(isp)-1))
then

arr(m) = atx

endif

endif

if (nisp.eq.ivehl+l.and.depp (m) .1t .suts (isp,
nka(isp)-1). and.ng.ge.intv.and.arr(m-
1) .ne.suts(isp, nka(isp)-1)) then

arr(m) = depp(m) + wid/speed

endif

nce = nce + 1

if(arr(m).le.arr(m-1) .and.arr(m) .gt.0.) then

arr{m) = arr(m-1) + 1.0

endif

ml0=m-1

call findep(arr, mi0)

if(arr(m).lt.arr(mi0)+0.5) then

arr{m) = arr(ml0) + 0.5

endif

returm

ad

*rkkhkkk

subroutine CROSST(kc, ku3, ku4, tde, carrr,
arrra, nvol, lgic, noff, icl, jd&, ip, Jp,
speed, ntg, mult, jvol, tuz, dtuz, mgl,
mgll, klt, krt, jwhl, jwh2, isps, nkas,
suts, ispsl, nkasl, sutsl, dist, iveh, ismt,
irs, igs, irsl, igsl, igf, kfa, ma, st, stl,
nca, jl, igis2, @s2, igss, qsi, ngss, rgs2,
igts, ast, iqgris, gsti, ngsts, rgst, ki2,
ki3, j2, igis2l, gs21, igssl, gsil, ngssi,
rgs2l, iqgtsl, gstl, igtisl, gstil, ngstsi,
rgstl, ki21, ki3l, carrl, cdepl, carr2,
cdep2, carr3, cdep3, darrl, ddepl, darr2,
ddep2, darr3, ddep3, ispl, nkal, sutcl,
ngal, adep, jdum, dvl, &2, dv3, &4, &S5,
dy6, jvar, ispec)

¢ processes vehicles in the cross street

dimension carrl(0:1500), cdepl(0:1500),
carr2 (0:1500)

dimension cdep2(0:1500), carr3(0:1500),
cdep3 (0:1500)

dimension darrl(0:1500), ddepl(0:1500),
darr2(0:1500)

dimension ddep?2(0:1500), darr3(0:1500),
Adep3 (0:1500)

dimension carrr(0:500), arrra(0:500),
adep (0:1500)

dimension ki2(0:1500), ki3 (0:1500),
ki21(0:1500), k131(0 1500)

dimension dist(20), iveh(20), noff(20)

dimension irs(20), igs(20), irsl(20), igsl(20),

igf(20) ’

dimension gs2(100), qst{(100), asti(100),
rgst {(100)

dimension @s21(100), g@stl1(100), qstil(100),
rgstl(100)

dimension zz(0:100), zsut(0:100)

‘dimension suts(0:100, 0:60), sutsl{0:100, 0:60)

dimension nkas(100), nkasl(100), qsi(100),
gs1l(100)

dimension jgn2(100), jen3(100), rgs2(100),
rgs21(100)

dimension nkal(100), tuz(15), dtuz(15)

dimension kfa(10), ma(15), st(15), stl(15),
sutcl(0:100, 0:60)

dimension dy1(0:60), &v2(0:60), dv3(0:60)

dimension @y4(0: 60), Ay5(0:60), dy6(0:60)

read(50)ixts, ncs, nes, ngs, ksl ks2, ks3, is,
ms,nls, iups, igis3, ncysl, ncys2, ncys3,
w32, ma3, iges,igeas, niis, nigs, nuas,
mxs, ixtsl, ncsl, nesl, ngsl, ksil, ks21,
ks31, isl, mnsl, josl, nrs, iupsl, igis3i,
ncysll, ncys2l,ncys3l, mgRl, mg3l, igesl,
igeasl, niisl, nigsl

read(50)muasl, nuxsl, ijk, ijki, kfi, mui,
nuil, imgsl, jocl, nuzi, mazil

read(50}dtigs, dtuas, druxs, cparrl, cpdepl,
cparr2, cpdep2,dtigsl, dtuasl, dtuxsl, dtui,
dtuil, detuzi, druzil, dparrl,dpdepl, dparr2,
dpdep2

rewind(50)

Jac = 2

if (kfa(jl) .eq.0) then

nui = 0

ixts = 0

lric = icl - lgic

if (milt.eq.0) then

write(ku3, 121) kc

121 format (/' ****** CROSS STREET # ', il,
******l/)

write(ku3, 122)

122 format (' *** Left lane of the cross street
***l/)

call HEAD(ku3, icl, lgic, 1lric, noff(2),
noff(3))

endif

* K ek Kk dek * % * % %k de %k de * Kk kK kk

xx¥left lane of the cross street ***

kkkkhkkdkkdkrk *hkkhhkdkkkkkhkk % % % K % ¥k

call CTIME(ke, igs, irs, noff, lgic, icl, ip,
ip)

call INIT(carrl, cdepl, carr2, cdep2, carr3,
cdep3, ncs, nes, ngs, ksl, ks2, ks3, is,
ms, m)

call INIT1(jos, nls, iups, igis2, iqgis3, ncysl,
ncys2, ncys3, mgl, mg2, me3, igts, iges,
igeas, iqtis, ngsts)

call INIT2(niis, isps, igss, ngss, nigs, dtigs,
muas, dtuas, nuxs, dtuxs)

call SIGADJ(irs, igs, lric, lgic, icl, dist,
speed, jac, kc,carrr, jdum, jvar)

endif

if(kfa(jl) .eq.0.or.kfa(j2) .eq.0.and.kfi.ne.1)
then

do 120 ij = 1,100

nkas (ij) =

nkasl(ij) = 1

120 continue

ijk =0

ijkl =

¢ ijk: 0; ig(2)<igs(2),1; otherwise (ijkl for
Ccross street)

if(igf(ke).gt.igs(2)) then
ijk =1
ijkd

i

1

135 contj.nue

call DPHDWY (zz, zsut)

do 145 im = 1,100

do 142 jm = 0,60,1

suts(im, jm) = jon3(im) + zsut(jm)
sutsl{im, jm) = jgn3(im) + zsut (jm)
142 continue

145 continue

if (kfa(jl) .eq.0) kfa(jl) =

kfi =1

endif

if (klt.ne.1l) go to 1000

C--- Arrival time at intersection 1 -———--
C

do 100 m = ma(jl) ,ma(jl)+ntg
if(igs(2).ge.ismt) jvol = jvol + 1

if(ixts.eqg.1l) go to 150
ki2(m) = 1s
ki3 (m) =

IF(nls.eq.0) then

carrl{m) = tdc * (m-is)

e}

C--- Departure time at intersection 1 ----

C

call DEPTQ(ksl, igs(l), irs(l), zz, cdepl, m,
icl, carrl, ncs,carr2, cdep2, ki2, mg2,
iveh(1l), ncysl, nui, dtui, jac, kc, jdum,
&yl, jvar)

C

C--- Arrival time at intersection 2 --———-

C

call ARRNT (carr2, cdep2, carrl, cdepl, m, ncs,
dist (1), speed, mq2, jac,jdum, jvar)

C

C--- Departure time at intersection 2 —---

C

Jjwh = jwhl

call DEPQLS(ks2, igs(2), irs(2), zz, cdep2, m,
icl, carr2, nes, carr3, cdep3, igis2, gs2,
ki3, mgl, ncys2, iveh(l), zsut, nkas, isps,
nuas, dtuas, suts, igss, gsi, ngss, rqgsz,
nigs, dtigs, jdg, nuxs, dtuxs, icx, jwh,
jac, ixts, tuz,dtuz, ijk, ji, 15, st, stl,
jdum, dy2, jvar)

if (ixts.eqg.l.and.ijk.eq.1l) then

ixts = 0

itk =0

endif

C

C--- Arrival time at intersection 3 ———---

C

if(ixts.eq.1l) go to 110

150 if(ixts.eq.l) ixts = 0

ELSEIF (iups.eg.l) then

carxrl(m) = cpaxrl
cdepl (m) = cpdepl
carr2(m) = cparr2
cdep2 (m) = cpdep2
nis =0

iups = 0

iges = 0

igeas = 0

ELSE

carrl(m) = cparrl
cdepl (m) = cpdepl
carr2(m) = cparr2
cdep2 (m) = cpdep2
ENDIF

icx = 1300

if(kc.eq.2) icw = 11

152 call ARRQLA(carr3 cdep3, carr2, cdep2, m,
nes, dist(2), speed, at3, carrr, is, mns,
nls, iups, k13 my3, igts, gst, iges, igeas,
iveh(l), icx, nkas, igps, suts, niis, igtis,
qsti, nigs, dtigs,ngsts, rgst, jdg, amp,
icw, jac, j&um, jvar)

ix =0
iow =0
C

C--- Departure time at intersection 3 —-—--

C

call DEPART'(ks3, igs(3), irs(3), zz, cdep3, m,
icl, carr3, ngs,ncys3, jac, 0, jdum, dy3,
Jvar)

mprod = 1

call UPMKA(ks3, igs(3), irs(3), zz, cdep3, m,
jdq, lgic, icl, carr3, ngs, mg3, 0, ncys3,
zsut, iveh(l), nkas, isps, suts,mprod, jac)

155 continue

if(nls.ne.0) then
cparrl = carrl(m

=)
cpdepl = cdepl (m)
cparr2 = carr2(m)
cpdep2 = cdep2 (m)
carrl(m) = O.
cdepl(m) = 0.
carr2(m) = 0.
cdep2 (m) = 0.
endif

if (mult.eq.0) then

call FRINT'(carrl, cdepl, carr2, cdep2, carr3,
cdep3, ku3, m, is,jos, mg3)

endif

if(ncys3.lt.isps) then
do 160 ik = igps,isps
nkas (ik) = nkas(ik) + 1
160 continue

else

do 161 ik = isps,ncys3
nkas (ik) = nkas(ik) + 1
161 continue

endif

if(nls.ne.0) then

carrl(m) = cparrl
cdepl (m) = cpdepl
carr2 (m) = cparr2
cdep2 (m) = cpdep2
endif

100 continue
110 ma(jl) = m
if(igs(2) .ge.ismt) jvol = jvol - 1

1000 if(krt.ne.l) go to 1100

L33 ¥ % de ok 3 ok %k K Kk *% %ok k

+Right lane of the cross street **
*kkkkhhkhkkk %% K

kkkkkhkhkkk

kkkkkkkkkkkdkk

if(kfa(32).eq.0) then

ixtsl = 0
jocl = 0
imgsl = 0

lric = icl - lgic

if (mult.eq.0) then

write(kud, 121) kc

write(kud, 221)

221 format (' *** Right lane of the cross street
***'/)

call HEAD(ku4, icl, lgic, lric, noff(2),
noff(3))

endif

call CTIME(ke, igsl, irsl, noff, lgic, icl, ip,
i}

call INIT(darrl, ddepl, darr2, ddep2, darr3,
ddep3, ncsl, nesl, ngsl, ksil, ks21, ks31,
isl, mnsl, m)

call INIT1(josl, nrs, iupsl, igis2l, igis3i,
ncysll, ncys2l, ncys3l, mgll, mg2l, mg3l,
igtsl, igesl, iqeasl,iqtisl, ngstsl)

call INIT2(niisl, ispsl, iqgssl, ngssl, nigsl,
drigsl, nwasl, dtuasl, nuxsl, dtuxsl)

call SIGADT(irsl, igsl, 1lric, lgic, icl, dist,
speed, jac,ke, carrr, jdum, jvar)

call DPHDWY (zz, zsut)

igsud = igsl(2)

jn=20

ncal = nca

if(jdg.eq.11) ncal = 3*nca

kfa(j2) =1

endif

C

C--- Arrival time at intersection 1 ----—--

C

do 200 m = ma(j2) ,ma(j2)+ntg
if(igsl(2).ge.ismt) jvol = jvol + 1
if(m.eq.1l) st0 = 0.0

if(ixtsl.eq.1) go to 250
ki21 (m)

darrl(m) = tdc * (m-isl)

C

C--- Departure time at intersection 1 ~-—-
C

150

c if(kc.eq.l.and.m.ge.18) then

c endif

call DEPIQ(ksll, igsl(l), irsl(l), zz, ddepl,
m, icl, darrl, ncsl, darr2, ddep2, ki21,
mg2l, iveh(l), ncysll, ruil, dtuil, jac, ke,
jd&um, dyd, jvar)

if(imgsl.eq.l) imgsl = 0

C

C--- Arrival time at intersection 2 ~———--

C

call ARRNT(darr2, ddep2, darrl, ddepl, m, ncsi,
dist(l), speed, mg2l,jac, jdum, jvar)

Cc

C--- Departure time at intersection 2 —-—--

C

Jjwh = jwh2

jz2 =1

if(kc.eq.2) jz2 =2
if(kc.eq.1l) icx = 54
if (kc.eq.3) jz2 = 11

call DEPQLS(ks21, igsl(2), irsl(2), zz, ddepz,
m, icl, darr2, nesl, darr3, ddep3, iqis2l,
gs2l, ki3l, mgll, ncys2l, iwveh(l), zsut,
nkasl, ispsl, nuasl, dtuasl, sutsl, igssl,
Q@sil, ngssl, rgs2l, nigsl, dtigsl, jdg,
nuxsl, dtuxsl, icx,jwh, jac, ixtsl, tuz,
dtuz, ijkl, j2, jz2, st, stl, jd&m, &5,
jvar)

if(ixtsl.eq.1l) jocl = 0

if(ixtsl.eq.l.and.ijkl.eq.1) then

ixtsl = 0

ikl =0

endif

C

C--- Arrival time at intersection 3 ———-—-
C

if(ixtsl.eq.1l) go to 210

250 if(ixtsl.eq.l) then

jz2 =1
if(ke.eq.2) jz2
if(kc.eq.3) jz2
ixtsl = 0

2
11

if
if

(kc.ne.3.and.m.ge.25) then

(tuz(jz2) .1t.ddep2 (m) .and. tuz (3z2) .gt .ddep2 (m
)-icl) then

tuz(jz2) = tuz(jz2) + icl

endif

endif

if(tuz (jz2).gt.igsl(2)) then

dtuz(jz2) = tuz(jz2) - igsl(2)

ddep2 (m) = Adep2(m) + dtuz(jz2)

if(ddep2 (m) .ge.irsl(2)) then

240 call UPDATE(nesl, ks21, igsl(2), irsl(2),
zz, ddep2, m, icl,ncys21)

nkasl (ispsl) = 0

ispsl = ispsl + 1

ixtsl = 1
go to 210
endif
endif
endif

if(ijkl.eq.0.and. ({nca.eqg.l.and. (ks2l.eq.2.0rx.
jdg.eqg.1l.and. (ks2l.eq.4.0r.ks21l.eq.5))) .ox.
(nca.eq.2.and. (ks2l.eq.2.or.ks2l.eq.3.0r.3dg

.eg.1ll.and.
(ks2l.eg.4.0r.ks2l.eq.5.0r.ks21l.eq.6.0r. ks21
.eq.7)}))) then

jz2 =1

if(kc.eq.2) jz2 = 2

if(kec.eq.3) jz2 = 11

if (ngal.ge.iveh(l) .and.stl(jz2)-1.1.gt.irsl(2))
then

call UPDATE(nesl, ks2l1, igsl(2), ixsl(2), zz,
ddep2, m, icl,ncys21)

go to 252

endif

josl = josl +1

arrra(josl) = ddep2(m)

if (ke.ne.3.and.ma(jz2) .ge.iveh(l)) then
ijoc = iveh(1)-(jocl+l)
call FINDST(ma(jz2), adep, iveh(l), ijoc, st0)

if(jdg.eq.7.and. (ngal.eq.iveh(l) .or. jocl+ngal.e
g.iveh(l)).or.jdg.eg-11.and.st0.gt .ddep2 (m))
then

ssc = st

ssd = ssc - ddep2 (m)

if(ssc.gt.irsl(2)) then
imqsl =1

if (ssc.gt.igsl(2)+icl) then
tuz(jz2) = ssc

endif

elseif (ssd.gt.0) then

mqsl =1

dtigsl = ssd

endif

endif

Jocl = jocl + 1
go to 255

endif

if(kc.eq.3) icx = 34

252 call ARRNT(darr3, ddep3, darr2, ddep2, m,
nesl, dist(2), speed, mgll,jac, jdum, jvar)
ix =0

C

C--- Departure time at intersection 3 —---

C

call DEPART(ks31, igsl(3), irsl(3), zz, ddep3,
m, icl, darr3, ngsl, ncys3l, jac, 0, jdum,

call UPDNKA(ks31, igsl(3), irsl(3), zz, ddep3,
m, jda, lgic, icl, darxr3, ngsl, mgll, O,
ncys3l, zsut, iveh(l), nkasl, ispsl,sutsl,
mprod, jac)

255 contirnue

ki3lp = josi

151

if(mult.eq.0) then

call FRINT(daxrl, ddepl, darr2, ddep2, darr3,
ddep3, kud, m,isl, josl, mg3l)

endif

if(imgsl.eq.l) then

call UFPDATE (nesl, ks21, igsl(2), irsl(2), zz,
ddep2, m, icl,ncys21)

mqsl =0

ks21 = ks21 - 1

jocl = 0

endif

if (ki3lp.ne.ki3l(m)) go to 262
if(ncys31.1t.ispsl) then

do 260 ik = ispsl,ispsl
nkasl(ik) = rkasl(ik) + 1

260 continue

else

do 261 ik = isgpsl,ncys31l
rkasl (ik) = nkasl{ik) + 1

261 continue

endif

262 if(imgsl.eg.1l) go to 210

200 contirnue

210 ma(j2) =m

if (igsl(2) .ge.iamt) jvol
if (imgsl.eq.l) then
ma{j2) =m+ 1
if(igsl(2) .ge.ismt) jvol = jvol + 1
endif

jwol - 1

1100 write(50)ixts, ncs, nes, ngs, ksl, ks2,
ks3, is, mns, nls, iups, igis3, ncysl,
ncys2, ncys3, mg2, mg3, iges, igeas, niis,
nigs, nuas, nuxs, ixtsl, ncsl, nesl, ngsl,
ksll, ks21, ks3l, isl, mnsl, josl, nrs,
iupsl, igis31l, ncysll, ncys2l, ncys31l, mg2l,
ma3l, igesl, igeasl, niisl, nigsl

write(50)muasl, nuxsl, ijk, ijkl, kfi, nui,
nuil, imgsl, jocl, nuzi, nuzil

write(50)dtigs, dtuas, dtuxs, cparrl, cpdepl,
cparr2, cpdep2, dtigsl, dtuasl, dtuxsl,
dtui, dtuwil, druzi, dtuzil, dparrl,dpdepl,
dparr2, dpdep2

rewind(50)

return

ed

*kdkkkKk

subroutine DEPTQ(k, ig, ir, z, dep, m, icl,
arr, nce, arrd, depd, ki, ng, ivehl, ncy,
nui, dtui, jac, kc, jaum, dphy, jvar)

¢ calculates vehicle departure times and
includes an option that delays departure
when a queue spillback occurs

dimension z(0:100), dep(0:1500), arr(0:1500)

dimension zsut (0:100), depd(0:1500),
arrd(0:1500), ki(0:1500)

dimension dphy (0:60)

if(m.eg.l) then

ng =0

stll = 0

endif

k=k+1

call DPHDWY (z, zsut)
if(jvar.eq.l.and.k.eq.l.or.k.eq.2) then
call nordev(jdum, dohy, icx)

endif

irel = ir+icl*(2-jac)

call FINDEV(m, depd, ivehl, lks, stll)

ipo=9

call NOQUE(axrrd, depd, 0, 0, ivehl, ki, m, ml,
ng, 0, 0, 0, ipo, 0)

if(arr(m).le.ircl) then

if(nq.eq.ivehl+l) then

if(jvar.eq.0) then

depm = z(k) + ig

else

depm = dphy (k) + ig

endif

mi =1
dtui = stll - demm
dep(m) = stll

if(stll.gt.ircl) then

igel = ig + icl

if(dep(m).gt.igecl) then

call UPDATE(nce, k, ig, ir, z, dep, m, icl,
ncy)

dtui = stll - ig - 2.05

if(dtui.gt.icl) then

260 call UPDATE(nce, k, ig, ir, z, dep, m, icl,
ny)

dtui = dtui - icl

dep(m) = stll

if(dtui.gt.icl) go to 260

endif

if(jvar.eq.0) then

dep(m) = z(k) + ig

else

dep(m) = dply (k) + ig

endif

if(dep(m).gt.ircl)then

call UPDATE(nce, k, ig, ir, z, dep, m, icl,

ncy)
nui = 0
endif
if (arr(m).ge.dep(m)) dep(m) = arr(m)
if(nui.eqg.l) dep(m) = dep(m) + dtui

100 continue

elseif (arr(m) .gt.ircl) then

call UPDATE(nce, k, 1ig, ir, z, dep, m, icl,
ny)

mi = 0

if (axr (m) .ge.dep(m)) dep(m) = arr(m)

endif

ml0=m-1

call findep(dep, ml0)
1f(dep(m).1t.dep(m10)+0.7) then
dep(m) = dep(ml0) + 0.7

endif

irel = ir+icl*(2-jac)

152

if(k.gt.2.and.arr(m-1) .eq.dep (m-1) .and.
arr(m).gt.ig.and.arr(m).le.ircl) then

dep(m) = arr(m)

endif

if(dep(m).gt.ircl) then

call UPDATE(nce, k, ig, ir, z, dep, m, icl,
ncy)

nui = 0

endif

return

ed

kkkdkkdk

subroutine PRN(arrl, depl, arr2, dep2, arr3,
dep3, ku, m, 3, jo, ng2, ng3, nqd)

¢ prints arrival and departure times at each
intersecticn

dimension arrl(0:1500), depl(0:1500),
arr2{0:1500)

dimension dep2(0:1500), arx3(0:1500),
dep3 (0:1500)

write(ku, 100) m, (m-j), J, jo, arrl{m),
depl(m), ng2, arr2(m), dep2(m), ng3, ngd,
arr3(m), dep3(m)

100 format(4I4,2(1%, 2F8.1, I3), 1X, I3,2F7.1)

return

ad

Kk ok Kk

subroutine FRINT(arrl, depl, arx2, dep2, arr3,
dep3, ku, m, j,jo, ng9)

¢ prints arrival and departure times at each
intersection

dimension arrl(0:1500), depl(0:1500),
arr2(0:1500)

dimension dep2(0:1500), arx3(0:1500),
dep3 (0:1500)

write(ku, 100) m, (m—3), j, jo, arrl(m),
depl{m), arr2(m), dep2(m), ng®, arr3(m),
dep3 (m)

100 format(4I4, 2(1xX, 2F8.1), I3, 1X, 2F8.1)

return

el

*kkkhkk

subroutine HEAD(J, icl, lgi, 1ri, noff2, noff3)

write(j, 100) icl, lgi, 1ri, noff2, noff3

100 format(3x, 'C=', i3, 'sec, ', ' g=', i2,
‘sec, ', ' r=', i2, 'sec, ', ‘' off2=', iz,
‘sec, ', ' off3=',i2, 'sec'/)

write(j, 200)

200 format (' ¥ thrutuwrn*** Int #1 ***%' t¥** Tnt
#2 ***l’ Viek ok Int #3 ***!/
‘inoutA.timeD.time', ' A.time D.time’,’
A.time D.time'/)

return

erd

*kdkkkk

subroutine INPUT(icl, dist, iveh, speed, ni)

¢ stores data in appropriate format and
locations for later use by other subroutines

dimension dist(20), iveh(20)

iveh(l) = int{dist(1)/20)
iveh(2) = int(dist(2)/20)
speed = 18.1

ni =3

retum

ed

kdkk ke k kK

subroutine INIT(arrl, depl, arr2, dep2, arr3,
dep3, nc, ne, ng, k1, k2, k3, i, n, m)

¢ initialize computational arrays

dimension arrl(0:1500), depl(0:15C0),
arr2(0:1500)

dimension dep2(0:1500),
dep3 (0:1500)

arx3(0:1500),

Q
[T | I U | B (R |

dkkkk gk

subroutine INIT1(jo, nrm, iup, igi2, igi3,
neyl, noy2, ncy3, ng2, ng3, ng9, igt, ige,
igea, iqgti, ngst)

¢ initialize corputaticnal arrays

8

NN
w oo
PP OO

nag3

HEE
wonouonn

Addq
SII'I-I‘H

ddekdkhk

subroutine INIT2(nii, isp, igs, ngs, nig, dtiq,
nua, dtua, nux,dtux)

< mltlallze camputational arrays

EREEEL
LI L VO TR

dtig = 0.
ma = 0
dtua = 0.
mx = 0
dtux = 0.
return

153

ed

ERIKIKK

subroutine SIGNAL({j1l, speed, icl, ni, ir, ig,
noff, lgi)

dimension ir(20), ig(20), noff(20)

¢ calculates arterial traffic signal timing

ir{(l) =

ig(l) = icl - 1gi

irl = ir(1)

igl = ig(l)

do 100 n = 1,ni-1

ir(n+l) = ir(l) + noff(n+l)

ign+l) = ig(l) + noff(n+l)

100 continue

if(jl.eg.3.or.jl.eq.4) then

ir(l) = 1r(ni)
ig(1) = ig(ni)
if(ir(1) gt 0) then
ig(1l) = ig(l) - icl
ir(l)y = ir(l) - icl
endif

ir(2) = ir(2)

ig(2) = ig(2)

ir(3) = irl

ig(3) = igl

endif

return

ad

Kk K KT KK

subroutine SIGNAL(jc, ni, ir, ig, irl, igl)
dimension ix(20), ig(20), irl(20), igl(20)
if(jc.eq.1l) then

do 100 n = 1,ni

irl(n) = ir(n)

iglin) = ig(n)

100 continue

else

o200 n=1,ni
irl(n) = ir(4-n)
igl{n) = ig(4-n)
200 continue
endif

retirm

erd

o ek gk dede

subroutine CTIME(ke, ig, ir, noff, lgi, icl,
ip, jp)

¢ calculates cross street traffic signal timing

d.i.nension ir(20), ig(20), noff(20)
ig(2) = noff (kc)

1f(1g(2) .ge.icl) ig(2) = ig(2) - icl
ir(2) = ig(2) + 1gi
(1) = ig(2) - ip
r(l) = ir(2) - ip
(3) = ig(l) + jp
r(3) = ir(l) + Jjp

return

ed

drde ke ke kK

subroutine SIGADT(ir, ig, 1ri, lgi, icl, dist,
speed, jac, ke,carrr, jdum, jvar)

¢ adjusts traffic signal timing obtained by
SIGNAL

dimension ir(20), ig(20), dist(20),

" carrr (0:500)

wid = 40.
if(jac.eq.2) wid = 60.

dcs = dist(1l) + wid
nce = Q
speed = -6.1525 + 15.268*alogl0(dcs)

if(ig(1)+1lgi.1t.0.0r.jac.eq.2.and. ir(1) .1e.7.2)
then

ir(l) = ix(1) + icl
ig(l) = ig(1) + icl

endif

al = 7.2

if(jac.eq.1) al = Iri + 2.04
if (kc.eq.1l) then

al = ig(l) + 2.04
if(al.lt.7.2) al = 7.2

endif
arr2f = al + (dist(1)+wid)/speed
ircl2 = ir(2) - icl

if(Jac.eq.l) ircl2 = ir(2)
if(kc.eq.l) ircl2 = ig(2)

if(arr2f.gt.ig(2)+1gi) then
ir(2) = ir(2) + icl
ig(2) = ig(2) + icl
elseif (arr2f.1t.ircl2) then

ir(2) = ir(2) - icl
ig(2) = ig(2) - icl
endif

if (arr2£.1t.ig(2)) dep2f = ig(2) + 2.04
if (arr2f.ge.ig(2)) dep2f = arx2f

arr3f = dep2f + (dist(2)+wid)/speed
ircl3 = ir(3) - icl

if(jac.eq.1) ircl3 = ir(3)

if (arr3f.gt.ig(3)+1gi) then
ig(3) = ig(3) + icl

ir(3) = ir(3) + icl

elseif (arr3f.lt.ircl3) then
ig(3) = ig(3) - icl

ir(3) = ir(3) - icl

endif

if(jac.eg.2.and.ig(3) .gt.carrr(l)+icl) then
ig(3) = ig(3) - icl

ir(3) = ir(3) - icl

endif

returm

ad

*hFkkkk

subrcutine UPDATE(nce, Xk, ig, ir, z, dep, m,
icl, ncy)

¢ updates signal timing

dimension z(0:100),dep(0:1500), zsut (0:100)

ne 0

k

ig = ig + icl

ir = ir + icl

call DPHDWY(z, zsut)

dep(m) = z(k) + ig

ncy = ncy + 1

return

exd

o
=]

154

dhAKK I,

subroutine UPDATI(nux, niqg, nua)

mx = 0
nig = 0
mwa = 0
returm
axd

*hkkhkk

subroutine PRNQOS(ku, nint, icl, lgi, jiq, as,
Jney, Jigs, gsi, jorgs, ras, pras, pas,
pgsn, ptgs, ismt, smtj, mult)

¢ calculates and prints mumber of queue
spillbacks caused by through traffic

dimension gs(100), gsi(100), rqgs(100)

if(mult.eq.0) then

smpd = smtj - ismt

write(ka, 111) nint

111 format(/' **** OS5 due to thru traffic at
Int.#', 12, *x¥*x1y)

write(kua, 113) ismtc

113 format ('Simulation starts at t =', i4, '
sec')

write(ku, 115) smtj

115 format ('Simulation ends at t =', £6.0, '
sec'/)

write(ku, 117) jncy

117 format (2x, 'No. of cycle:', i3/)

do 100 ig = 1, jig

write(ku, 110) iq, gs(iq)

110 format(i8, 8x, f£8.1)

100 continue

i1f(jig.eq.0) then

write(ku, 120) jig

120 format(2x, 'No. of QSi-full:', i3/)
else

call ONNOS(ismt, smtj, gs, jiq)
write(ku, 120) jig

endif

do 200 jg = 1, jigs

write(ku, 210) jq, gsi(jq)

210 format (i8, 8x, £8.1)

200 contimue

if(jigs.eq.0) then

write(ku, 220) jigs

220 format (2x, 'No. of QSi-n.full:',i3/)
else

call CNMRS(ismt, smtj, gsi, jigs)
write(ku, 220) jigs

endif

c
do 300 ia = 1, jrrgs

write(ku, 310) ia, rgs(ia)

310 format (i8, 8x, £8.1)

300 continue

if (jnrgs.eq.0) then

vwrite(ku, 320) jnrgs

320 format(2x, 'No. of QS-full/n.full:’, i3/)
else

call QS (ismt, smtj, rgs, jnrgs)

write(ku, 320) jnrgs

endif

endif

if(malt.eq.l) then

if(jig.ne.0) then

call QNOS (ismt, smtj, gs, Jjiq)
endif

if{jigs.ne.0) then

call CQNNQS (igmt, emtj, gsi, jigs)
endif

if(jnrgs.ne.0) then

call CNNQS (ismt, smtj, rgs, jnrgs)
endif

endif

ncy = jncy

prgs = jnrgs/kncy

pgs = jig/lney

pgsn = jigs/kncy

jtotal = jig + jigs + jnrgs
ptgs = jtotal/ncy

if(rult.eq.0) then

write(ku, 340) prags

340 format ('No.of QS-f/n.f per cycle:', £5.2,
/ cycle'/)

write(ku, 360) jtotal

360 format (2x, ‘No. of QS(i)-total:‘, i3/)

write(ku, 380) ptgs

380 format ('No.of QS(i)-total per cycle:',
£5.2, ' / cycle'/)

write(ku, 460) smpd

460 foxmat (2x, 'Simulation Period:', £6.0, °*
sec'/)

endif

returm

ad

kKKK KhKk

subroutine CNNQS(ismt, smti, wgs, Jjnngs)

¢ counts mmbers of queue spillbacks

dimension wgs (100)

mags = 0

do 100 ii = 1,3jmgs

if (wgs(ii) .gt.ilsmt.and.was({ii).lt.smt]) then

nmgs = mgs + 1

endif

100 contirme

jnngs = nngs

returm

end

Kkdkkkkk

subroutine PRNQST(ku, nint, jiaqt, gst, jigti,
gsti, jncy, jnrgst, rast, prgst, pgst,
pastn, ptgst, ismt, smtj, mult)

¢ calculates and prints number of queue
spillbacks caused by turning-in vehicles

dimension qgst(100), gsti(100), rgst(100)

if (mult.eq.0) then

write(ku, 111) nint

111 format (/' **** Q3 due to turn-in traffic at

Int. #', 12,' **x**'/)
write(ku, 117) jncy
117 format (2x, 'No. of cycle:', i3/)

do 100 iq = 1, jigt
write(ku, 110) iqg, gst(iq)
110 format(i8, 8x, £8.1)
100 continue

if(jigt.eg.0) then

write(ku, 120) jigt

120 format (2x, '‘No. of QSi-full:', i3/)
else

call CNNQS{ismt, smtj, gst, jigt)
write(ku, 120) jigt

endif

do 200 ia = 1, jigti

write(ku, 210) ia, gsti(ia)

210 format(i8, 8x, £8.1)

200 continue

if(jigti.eq.0) then

write(ka, 220) jigti

220 format(2x, ‘'No. of QSi-n.full:', i3/)
else

call CNNQS({ismt, smtj, gsti, jiqgti)
write(ku, 220) jigti

endif

do 300 iat =1, jnrgst

write(ka, 310) iat, rgst(iat)

310 format(i8, 8x, £8.1)

300 continue

if(jnrgst.eq.0) then

write(ku, 320) jnrgst

320 format (2%, 'No. of QS-full/n.full:', i3/)
else

call CNNQS(ismt, smtj, rgst, jnrgst)
write(ku, 320) jnrgst

endif

endif

if (mult.eq.1l) then

if(jigt.ne.0) then

call CNNQS(ismt, smtj, @st, jigr)
endif

if(jigti.ne.0) then

call OMNOS(ismt, smtj, gsti, jiqgti)
endif

if{jnrgst.ne.0) then

call CNNQS(ismt, smtj, rgst, jnrgst)
endif

endif

ey = jnoy

prgst = jirgst/lncy

past = jigt/ncy

pestn = jigri/ncy

Jjtotal = jigt + jigti + jnrgst
ptgst = jtotal/lncy

if (mult.eq.0) then

write(ku, 340) prgst

340 format (‘No.of Qs-f/n.f per cycle:*, £5.2,
/ cycle'/)

write(ku, 360) jtotal

360 format (2x, “No. of QS(i)-total:', i3/)

write(ku, 380) ptast

380 format('No.of QS(i)-total per cycle:',
£5.2, ' / cycle'/)

endif

return

ad

kkdkhkkk

subroutine PRNOPL(ku, jec, 1n, incre, ioffl,
ioff2, joffl, joff2, pt)

¢ prints sumarized outputs (mumber of queue
spillbacks per cycle)

dimension pt(0:15, 0:15)

if(jc.eq.1l) then

write(ku, 10) In

10 format (/4X, ‘arterial lane no.', il/)

elseif(jc.eq.2) then

write(ku, 20) 1ln

20 format (/4X, 'cross street no.', il/)

elseif (jc.eg.3) then

write(ku, 30)

30 format(/4X, ‘arterial total'/)

elseif (jc.eq.4) then

write(ku, 40)

40 format (/4X, 'cross street total'/)

elseif(jc.eq.5) then

write(ku, 50)

50 format (/4X, 'No.of QS per cycle: Total'/)

elseif(jc.eqg.6) then

write(ku, 60)

60 format(/4X, 'Simulation Period: Total'/)

endif

write(ku, 200) (jp*incre,ip = joffl, joff2)

200 format(4x, ‘off3:', i2, 14(3x, i3))

write(ku, 300)

300 formmat(2x, 'off2')

do 500 ip = ioffl,ioff2

if(jc.ne.6) then

write(ku, 400) ip*incre, (pt(ip, Jp).Jjp=joffl,

Joff2)
400 format(3x, i3, 15£6.2)
else

write(ku, 410) ip*incre, (pt(ip, 3p),Jjp=joffl,

Joff2)
410 format(3x, i3, 15f6 0}
endif
500 continue
retum
end

*kdekkkt

subroutine PRNOP2 (ku, 1n, incre, ioffl, ioff2,

joffl, joff2, mt)

¢ prints summarized ocutputs (number of vehicles

simulated)
dimension mt(0:15, 0:15)
if(In.eq.99) then
write(ku, 100)
100 format(/4X, 'No. of vehicles (warmup)'/)
go to 15
endif
write(ku, 10) In
10 format (/4X, ‘lane no.'i2/)
15 write(ku, 20) (jp*incre,jp = joffl, joff2)
20 format(4x, ‘'off3:', i2, 14(3x, i3))
write(ku, 30)
30 format (2%, 'off2')
do 50 ip = ioffl, ioff2

write(ku, 40)“ip*incre, (mt(ip, ip),jp = joffl,

joff2)
40 format (3x, i3, 15i6)
50 continue
returm
end

156

FThREKRKK

subroutine cspeed(m, nce, arrp, depp, speed,
des, icx)

¢ calculates average overall speeds

dimension depp(0:1500), arrp(0:1500)

if (nce.gt.0) then

speed = 13.033 + 0.026584*dcs

elseif (arrp(m) .ne.depp(m)) then

speed = -6.1525 + 15.268*alogl0 (dcs)

else

speed = 42.77

endif

return

ed

K kkxdkk

subroutine ranspd(jdum, nce, arrp, depp, dcs,
speed, icx)

C generates random average overall speeds

dimension m(100), vnor(100), depp(0:1500),
arrp(0:1500)

idum = j&m - 100

jdum = jdum - 100

if(nce.gt.0) then

s = 2.85

elseif (arrp(m) .ne.depp(m)) then

s = 3.28

else

xbar = 42.77

s = 6.31

endif

ni

nj

1
1

nu

call ranmm (idum, rn, ni)
call normal (rxn, vnor, nj, icx)

if (nce.gt.0) then

speed = s*vnor(1l) + 13.033 + 0.026584*dcs
elseif (arrp(m) .ne.depp(m)) then

speed = s*vnor(l) - 6.1525 + 15.268*alogl0(dcs)
else

speed = s*vnor(l) + xbar

endif

return

ad

Fededkkk Kk

subroutine nordev(jdum, dphy, icx)

C generates normal random deviates with a mean
m and a standard deviation s

dimension m(100), vnor(100), hdwy (100),
dphy (0:60)

idm = jdum -~ 100

jdm = jdum - 100

s = 0.43
ni = 100
J = 60
dphy(O =0

call ranmum (idum, rm, ni)
call normmal (rm, vnor, nj, icx)
do 11 j = 1,nj

l—‘l\)l\)l\)
(I)l‘—"lbo
NN O

xbar
xbar
xoar
xbar

hdwy (j) = s*vnor(j) + xbar
dphy (3} = dphy(3-1) + hdwy(3)

11 continue
return
ed

*hFxhFK

subroutine rammum({idum, m, ni)
¢ generates uniform random deviates between 0.0

and 1.0
dimension r(97),rm(100)
parameter

(m1=259200, 1a1=7141, ic1=54773, rml=1. /ml)

parameter

(m2=134456, 1a2=8121, ic2=28411, om2=1. /m2)
parameter (m3=243000,1a3=4561,1ic3=51349)

data iff /0/
do1Ci=1,ni

if (idum.lt.0.or.iff.eqg.0) then

iff =1
ix1l = mod(icl-idum, ml)

ixl = mod(ial*ixl+icl, ml)

12 = mod(ixl, m2)

ixl = mod(ial*ixl+icl, ml)

ix3 = mod(ixl, m3)
do 11 § = 1,97

ix1l = mod(ial*ixl+icl, ml)
ix2 = mod(ia2*ix2+ic2, n2)
r(j) = (float (ixl)+float (ix2) *mm2) *xml

11 continue
idum = 1
endif

ixl = mod(ial*ixl+icl, ml)
ix2 = mod(ia2*ix2+ic2, m2)
ix3 = mod(ia3*ix3+ic3, m3)

§ =1+ (97*ix3) /m3
i

£ (j.gt.97.0r.j.1t.1) pause 'stop’

m(i) = r(j)

r(j) = (float(ixl)+float (ix2)*xm2) *xml

10 continue
returm
end

Fkhk I KK

subroutine normal (xm, vior, nj, icx)

¢ generates nomally distributed deviates
zero mean and wiit variance

dimension mm(100),vnor(100)

data iset/0/
i=0
iov =0

do 50 k = 1,nj
vnor{k) = 0.0
50 continue

do 100 j = 1,nJ

if (iset.eq.0) then
i=1i+2

10vl = 2.*m(i-1) - 1.
v2 = 2.*m(i) - 1.

T = VI¥*2 4+ v2**2

if (r.ge.l) then
i=1+2

157

go to 100
endif

fac = sqrt(-2.*log(x) /)
gset = vi*fac

gasdev = v2*fac

jJ =3

if(iov.eq.l) jJ = jj - 1
vnor(jj) = gasdev

iset = 1

else

gasdev = gset

i3 =1

if(iov.eq.1) 3 = 33 - 1
vnor{jj) = gasdev

iset = 0

endif

100 continue

return

ad

158

Appendix B

Source Code (Two-way Operation Version):

Traffic Simulation Model For Oversaturated Arterial Networks

159

160

program

¢ traffic simulation model for oversaturated
arterial networks

¢ two-way arterial cperation version

dimension arrl(0:2000), depl(0:2000),
arr2(0:2000)

dimension dep2(0:2000), arr3(0:2000),
dep3 (0:2000)

dimension arrll(0:2000), depll(0:2000),
arr21(0:2000)

dimension dep21(0:2000), arr31(0:2000),
Jep31(0:2000)

dimension zz(0:100), zsut(0:100), igf(20)

dimension arrr2(0:500), arrl3{0:500),
arrrd (0:500)

dimension carxrll(0:500), carrr2(0:500),
carrl3 (0:500)

dimension ki2(0:2000), ki3(0:2000),
ki21(0:2000), ki31(0:2000)

dimension dist(20), iveh(20), ir(20), ig(20),
ir1(20), igl(20)

dimension ptal(0:15, 0:15), pta2(0:15, 0:15),
pta3(0:15, 0:15)

dimension pta4(0:15, 0:15), ptcl(0:15, 0:15),
ptc2(0:15, 0:15)

dimension pte3(0:15, 0:15), ptat(0:15, 0:15),

ptct(0:15, 0:15)
dimension ptst(0:15, 0:15), spst(0:15, 0:15)
dimension mar(0:15, 0:15), mal(0:15, 0:15),
mw{0:15, 0:15)

dimension marb(0:15, 0:15), malb(0:15, 0:15)
dimension gs2(80), ¢s20(80), gs21(80), gs31(80)
dimension gst(80), qgstl1(80), gsti(80)
gstil(80)
dimension noff(20), jonl{(100), jon2(100),
Jon3 (100)
dimension nka(100), nka0(100), nkal(100),
nka?2 (100)
dimension gsi(80), gsi0(80), gsil(80), gsi2(80)

dimension suts(0:100, 0:60), suts0(0:100, 0:60)

dimension sutsl(0:100, 0:60), suts2(0:100,
0:60)

dimension rgst (80), rgstl(80), dep(10)

dimension rgs2(80), rgs20(80), rgs21(80),
rgs31(80)

dimension tuz(15), dtuz(l5), wuz (15, 80),
ib(15)

dimension kfa(l0), ma(10), st(15)

dimension arrbl (0:2000), depbl(0:2000),
arrb2 (0:2000)

dimension depb2(0:2000), arxb3(0:2000),
depb3 (0:2000)

dimension arrbll(0:2000), depbll(0:2000),
arrb21 (0:2000)

dimension depb21(0:2000), arrb31(0:2000),
depb31 (0:2000)

dimension arrrb2(0:500), arrlb3(0:500),
arrrbd (0:500)

dimension darrll(0:500), darrx2(0:500),
darrl3 (0:500)

dimension kib2(0:2000), kib3(0:2000),
kib21(0:2000)

dimension irb(20), igh(20), irbl(20), igbl(20),
kib31(0:2000)

dimension gsb2 (80},
asb31 (80)

asb20(80), qsb21(80),

161

dimension gstb(80), gstbl(80), qst1b(80),
gstibl (80)

dimension nkab(100),
nkab2 (100)

dimension gsib(80), gsib0(80), qsibl(80),
asib2(80)

dimension sutsb(0:100, 0:60),
0:60)

dimension sutsbl(0:100, 0:60), sutsb2(0:100,
0:60)

dimension rgstb(80), rgstbl(80)

dimension rgsb2(80), ragsb20(80), rasb21(80),
rgsb31(80)

nkab0(100), nkabl (100),

sutsb0(0:100,

dimension mcll1(0:15, 0:15), merl(0:15, 0:15)

dimension carrl(0:2000), cdepl(0:2000),
carr2(0:2000)

dimension cdep2(0:2000), carr3(0:2000),
cdep3 (0:2000)

dimension darrl(0:2000), ddepl(0:2000),
darr2(0:2000)

dimension ddep2(0:2000
ddep3 (0:2000)

dimension kir2(0:2000), kir3(0:2000),
kir21(0:2000)

dimension irr(20), igr(20), irrl(20), igrl(20),
kir31(0:2000)

dimension nkar(100), rﬂ(arl(lOO)

dimension sutsr(0:100, 0:60), sutsrl(0:100,
0:60)

dimension gsr2(80), gsr21(80), gstr(80),
Qstrl(80)

dimension gsir(80),
astirl (80)

dimension rgsr2(80), xrgsr2l(80),
rgstrl (80)

). darr3(0:2000),

qsirl(80), gstir(80),

rgstr(80),

dimension mc12(0:15, 0:15), mer2(0:15, 0:15)

dimension earrl (0:2000), edepl(0:2000),
earr2 (0:2000)

dimension edep2(0:2000), earr3(0:2000),
edep3 (0:2000)

dimension farrl(0:2000), fdepl(0:2000),
farr2(0:2000)

dimension fdep2(0:2000), farr3(0:2000),

fdep3 (0:2000)
dimension kis2(0:2000),
kis21(0:2000)
dimension irs(20), igs(20), irsl(20), igsl(20),
kis31(0:2000)
dimension nkas(100), nkasl(100)
dimension sutss(0:100, 0:60), sutssl(0:100,
0:60)

kis3(0:2000),

dimension gss2(80), ¢ss21(80), gsts(80),
gstsl (80)

dimension gsis(80), gsisl(80), gstis(80),
qgstisl (80)

dimension rgss2(80), rgss21(80), rgsts(80),
rgstsl (80)

dimension mel3(0:15, 0:15), mer3(0:15, 0:15)

dimension garrl(0:2000), gdepl(0:2000),
garr2(0:2000)

dimension gdep2(0:2000), garr3(0:2000),
gdep3 (0:2000)

dimension harrl(0:2000), hdepl(0:2000),

harr2(0:2000)

dimension hdep2(0:2000), harr3(0:2000),
hdep3 (0:2000)

dimension kit2(0:2000), kit3(0:2000),
kit21(0:2000)

dimension irt(20), igt(20), irtl(20), igti(20),

kit31(0:2000)

dimension nkat (100), nkatl(100)

dimension sutst(0:100, 0:60), sutstl(0:100,
0:60)

dimension qst2(80), ast21(80), qgstt(80),
gstt1(80)

dimension gsit(80), asitl(80), gstit(80),
gstitl(80)

dimension rgst2(80), rgst21(80), rgstt(80),
rgsttl(80)

dimension mj(100), mjl(100), mj2(100), bj(30),
bj1(30), bj2(30)

dimension dy1(0:60), d&v2(0:60), dy3(0:60)

dimension dy4(0:60), &5(0:60), dy6{0:60)

dimension dyal(0:60), dva2(0:60), dya3(0:60)

dimension dyva4(0:60), dya5(0:60), dya6(0:60)

dimension dy11(0:60), dy12(0:60), &13(0:60)

dimension dyl14(0:60), dyl5(0:60), dvl6(0:60)

dimension &y21(0:60), &22(0:60), &y23(0:60)

dimension dy24(0:60), d&y25(0:60), dy26(0:60)

dimension &31(0:60), &32(0:60), d&33(0:60)

dimension dy34(0:60), &y35(0:60), dy36(0:60)

C

open(4, file='inputo', status=‘old',
form=' formatted')
read(4, *) mult, jcoye, jvar
read(4, *) nvol, ncwu, tde, nac, nca
read(4, *) dist(l), dist(2), wida, widc, avsh
read(4, *) icl, lgi, idm, incg, ipt, jdg

read(4, *) noff(l), ioffl, ioff2, joffl, joff2,

mcre

¢ input variables

0

¢ mult: nurber of cases (0; single case, 1;
multiple cases for cptimization)

¢ joyc: cycle length cptimization (0; no, 1;
ves)

¢ jvar: variability of parameters (0; no, 1;
ves)

¢ nvol: mumber of vehicles to be simulated

¢ nowu: mmber of signal cycles for warm-up
taime

€ tdc: cross street traffic demand (arriving
headway')

C nac: number of turming vehicles per cycle
fram arterial to cross street (CS)

¢ nca: number of turning vehicles per cycle
fram CS to arterial

¢ dist(1): link length between the ist and 2nd
intersections [ft]

¢ dist(2): link length between the 2nd and 3rd

intersections [ft]

wida: width of arterial [ft]

widc: width of cross streets [ft]

avsh: average vehicle space headway [ft]

icl: cycle length [sec]

1gi: arterial green interval [sec]

icn: difference between maximm and minimmm

arterial greens [sec]

incg: increment of idxn (for optimization)

[sec]

a0 aoaoaa

9]

¢ ipt: protected left turn phase duration (only

for two-way cperation) [sec]

¢ jdg: minimum delay to determine a queue
spillback [sec]

¢ noff(1l): offset 1 [sec]

c ioffl: minimum offset 2 (0, for
optimization)

¢ ioff2: minimum offset 2 (C, for
optimization)

¢ joffl: minimum offset 3 (0, for
optimization)

¢ joff2: minimum offset 3 (C, for
optimization)

c incre: increment of offsets (for
optimization)

open(unit=10, file='y1d', status='unknown'
form="formatted"')

open(unit=11, file='y2i', status='unknown',

form="formatted")

open(unit=12, file='y3', status=‘unknown',
form="formatted')

open(unit=13, file='y4', status=‘unknown',
form="formatted')

open{unit=20, file='y5p', status=‘unkncwn',

form="formatted')

open(unit=21, file='y6j', status='unknown',

form="formatted')

open(unit=30, file='y7', status='unknown',
form="formatted')

open(unit=31, file='y8', status='unknown',
form="formatted')

open(unit=40, file='y9', status='unknown',
form=" formatted’)

open(unit=41, file='y10', status='unknown',

form="formatted')
open(unit=50, file='sc', status='unknown',
form="unformatted*)

EEE

W nonn
[
o

lri = icl - lgi

noff(l) =0

icl = lgi + 1ri

nacl = nac

ncas = nca

if(jdg.eq.11) then
nacl = 3*nac
ncas = 3*nca

endif

if(mult.eqg.1l) then
write(kul, 120) icl, lgi-ipt, ipt, 1ri,
dist (1)
write(ku2, 120) icl, lgi-ipt, ipt, 1lri,
dist (1)
write(kuS, 120) icl, lgi-ipt, ipt, 1lri,
dist(1)

162

write(ku6, 120) icl, lgi-ipt, ipt, 1lri,
dist(1)

120 format(/2x, 'C=‘, i3,
1=+, i2, ' r=', i2, ',
£5.0, *fr.")
write(kul, 125) nacl, ncas
write(ku2, 125) nacl, ncas
write(ku5, 125) nacl, ncas
write(ku6, 125) nacl, ncas

125 format (2x, 'turn-in: ', ‘'{art to cro) =',
iz, ' veh/cycle, ', ' (cro to art) =', i2, '
veh/cycle')

endif

‘sec.', ' g=', 12,
link length =",

ioff2
Jjoff2
lgi+ichm,

do 400 ip
do 410 jp
do 420 kp

ioffl,
joffl,
loi,

incg

noff(2) = ip*incre

noff(3) = jp*incre

if (noff(2) .ge.icl) noff(2)
if (noff(3).ge.icl) noff(3)
ipz = noff(2)

Jpz = noff(3)

noff(2) - icl
noff (3) - icl

lgi = kp
if(jcyc.eq.l) then
1lxri = kp/incg
icl = 1lgi + 1lri
else
iri = icl - kp
endif

if (mult.eq.0) then
lgit = lgi - ipt
call BEAD(kul, icl, lgit, ipt, 1lri, noff(2),
noff(3))
call HEAD(kw2, icl, lgit, ipt, lri, noff(2),
noff (3))
call HEAD(ku3, icl, lgit, ipt, lri, noff(2),
noff(3))
call HEAD(kud, icl, lgit, ipt, 1lri, noff(2),
noff(3))

endif

do 130 ij
nka(ij)
nkal(i3j)
nkal (i)
nka2(13)
nkab(ij)
nkab0 (13)
nkabl {1j)
nkab?2 (13)

130 continue

do 140 km = 0, 500
carrll {km)
carrr2 (km)
carrl3 (km)
arrr2{km) = 0
arrl3(km) = 0.
arrrd (km) =
darrll (km)
darrr2 (km)
darrl3 (km)
arrrb2 (km)
arrlb3 (km)
arrrid (km)

140 continue

, 100

0on
e

oaon
[

wouon
=

nowon ouonn

163

e e o ke ke e e e ok e e de ke ke ok ok

**%kkx Arterial, A direction
**%xx Right lane

call INPUT(icl, dist, iveh, speed, ni)
ixt1l
ixtl2
ixt13
ixt21
ixt22
ixt23
ixt31
ixt32
ixt33
ixt4l
ixtd2
ixt43
ntg = 99
jvol = 0
kskip = 0
ksk = 0

LI ¢ O € | N | |
[eNeNoNeNeNoloNoNoloNoNo

el

do 150 3
kfa(3)
ma(j) = 1

150 continue

do 160 J =1, 15
ib(3) =1
tuz(j) = 0.0
dtuz(j) = 0.0

160 continue

no

1, 10
0

ot

&

]
ol

9

NS
woaon
[N e)

=0
=0

jorb2
Jdum = -302357

Cm———— Initialization

c

if(kfa(l).eq.0) then

call SIGNAL(1, speed, icl, ni, ir, ig, noff,
lgi)

call INIT(arrl, depl, arr2, dep2, arr3, dep3,
nc, ne, ng, k1, k2, kK3, i, n, m)

call INIT1(jo, nr, iup, igi2, igi3, ncyl, ncy2,
ncy3, ng2, ng3, ng2i, indl, igt, ige, igea,
igti, ngst)

call INIT2(nii, isp, igs, ngs, niq, dtiq, nua,
dtua, nux, dtux)

call INIT2(nii0, isp0, igs0, ngsO, niq0, dtiqo,
nual, dtual, nux0, dtux0)

call SIGADJ (ir, ig, lri, lgi, icl, dist, speed,
jac, ke, arrr2, jdum, jvar)

call SIGNAl(1l, ni, ir, ig, irl, igl)
call SIGNAI(2, ni, ir, ig, irb, igb)

if(irb(1). gt 0) then
igh(1) = igb(l) - icl
irb(1) = b(l) - icl
endif

call SIGNA1(1, ni, irb, igb, irbl, igbl)
ismt = ig(2) + nowua * icl

igl (1)

igsu2 = igb(2)

igsu3 = igl(3)

call DPHDWY (zz, zsut)

n=20

165do 170 kt = 1, nacl
n=3jn+ 1

igsul

noa

carrll(jn) = igsul + (1lgi-ipt) + zz(kt)
darrr2(jn) = igsu2 + (lgi-ipt) + zz(kt)
carrl3(jn) = igsu3 + (lgi-ipt) + zz(kt)

170 continue

igsul = igsul + icl

igsu2 = igsu2 + icl

igsu3d = igsu3 + icl

if(jn.1t.470) go to 165

igf(l) = ig(1)

igf(2) = ig(2)

igf(3) = igb(1)

Jonl(l) = ig(1)

jon2(1) = ig(2)

Jgn3 (1) = ig(3)

do 190 k = 2, 100
Jonl(k) = jgnl(k-1) + icl
jom2 (k) = jgn2(k-1) + icl

jom3(k) = jogn3(k-1)} + icl
190 continue
call DPHDWY (zz, zsut)

do 200 im = 1, 100
do 210 jm =0, 60, 1
(im

suts(im, jm) = jon2 + zsut (jm)

suts0(im, jm) =]9n3(+ zsut (jm)
sutsl(im, jm) = jon2(im) + zsut (jm)
suts2(im, jm) = jon3(im) + zsut(jm)
sutsb(im, jm) = jgn2(im + Zsut (jm)
sutsb0{im, jm) = jonl(im) + zsut(jm)
sutsbl (im, jm) = jgn2(im) + zsut(jm)
sutsb2 (im, jm) = jonl(im) + zsut(jm)

210 contimue
200 continue

kfa(l) =
endif

C

smtj = 0.
noxml
noxm2

1
1
norm3 = 1

nonon

164

|

L R A I nn wown
I—\"}—‘OOO 1 It i

Jxtll
jxt12
Jjxt13
Jxt21
jxt22
=23
jxt31
jxt32
jxt33
jxt4l
jxtcd2
xtd3

PR R R R R e

o

BRBEEET

"
[on)

ibs9 =

kibs9 = 0
1000 continue
jac =1

kltl
krtl
kit2
Ixt2
k13
krt3
k1tbl
krtbl
kKlth2
krth2
kith3
krth3

{1 TR | I TR 1}
[oNoNoNoNeNo]

DO OO0OO

ownnonon

1f(ig(2) .gt.200.and.ig(2) .gt.igs(2)) then
1
0

:

if (igbl(3).gt.200.and.igbl (3) .gt.igr(2)) then
normB =1
=0

a’JdJ.f

if (norml.eq.l) then

call RIGHTL(1, nvol, dist, iveh, speed, jdq,
mult, icl, lgi, kul, arrr2, carrr2, m, ml,
ma, ntg, jvol, imgl, ki2, ki3, jo, nr, at2,
arri, depl arr2, dep2, arr3, dep3, i, ki,
k2, k3, ig, ir, nc, ne, ng, igi2, iqi3, gs2,
@s20, ng2, ng3, ncyl, ncy2, ncy3, nka, nka0,
isp, isp0, mua, nuald, dtua, dtual, suts,
suts0, igs, igsO, gsi, gsi0, ngs, ngso,
rgs2, rqgs20, nig, nig0, dtiqg, driq, nux,
mx0, dtux, dtux0, jac, tuz, dtuz, wuz, ib,
10, 11, 12, ng2i, nuzjl, dtuzijl, n, iup,
indl, iqgt, gst, 1qe, igea, nii, nii0, igti,
gsti, ngst, rgst, jor, mgc2l, sutssi, ispsl,
nkasl, ismt, nibi, nibj, ixtll, ixtl2,
ixt13, jxtll, jxtl2, jxtl13, icy, st, ipt,
nac, noff, krt2, kexl, irs, ibs7, kibs7,
jdum, dyl, &2, &3, jvar)

if(kx2.eq.1l) krt2 =

if(m.ge.157) then

endif

endif

*kkkk kkkkkk kK

Arterial, A direction

*xkkk Teft lane

if(kfa(2).eq.0) then

Jjo2 = 0

call INIT(arxll, depll, arr2l, dep2l, arr3l,
dep3l, ncl, nel, ngl, ki1, k21, k31, ii, mm,
m

call INIT1(jol, nl, iupl, igi2l, igi3l, ncyll,
ney2l, ney3l, ngl2, ngl3, ngl3i, indll,
igtl, igel, igeal, iqgtil, ngstl)

call INIT2 (niil, ispl, igs2, ngs2, nigl, dtigl,
mual, dtual, muxl, dtuxd) :

call INIT2(nii2, isp2, iqs3, ngs3, nig2, dtiq2,
nua2, dtua?, nux2, dtux2)

mx3 = 0

dtuxd = 0.

kfa(2) =1

endif

if (norm2.eqg.l) then

call LEFTL(2, nvol, dist, iveh, speed, jdq,
mult, icl, 1lgi, kw2, arrl3, carrll, m, ma,
ntg, jvol, img2, img3, ki2l, ki3l, 0, O,
iwc21, ixt22, ixt23, jxt2l, jxt22, jxt23,
jol, nl, at3, arrll, depll, arr2l, dep2l,
arr3l, dep3l, ii, k11, k21, k31, igl, ird,
ncl, nel, ngl, igi2l, igi3l, gs21, gs31,
ngl2, ngl3, ncyll, ncy2l, ncy3l, nkal, nka2,
ispl, isp2, mual, nua2, dtual, dtua2, sutsl,
suts2, iges2, igs3, gsil, gsi2, ngs2, ngs3,
rgs2l, rgs3l, nigl, nig2, dtiql, dtigz,
mxl, nux2, dtuxl, dtux2, jac, tuz, dtuz,
wuz, ib, 20, 21, 22, ngl3i, nuzj2, dcuzj2,
m, iupl, ind1l, igtl, gstl, igel, igeal,
nii2, igtil, gstil, ngstl, rgstl, jordl,
mgel, mge3, sutsr, ispr, nkar, ismt, carrl3,
jo2, muzj3, dtuzj3, jor2, sutst, ispt, nkat,
icz, st, ipt, nac, noff, kr2, kix3, mu3,
drwd3, irr, irt, ibs5, kibs5, ibs9, kibs9,
jaam, dv4, dy5, dy6, jvar)

endif

*kkkk *hkkkkKkkK*X

Arterial, B direction

*xxkkx Right lane

if (kfa(3).eq.0) then

call INIT(arrbl, depbl, arrb2, depb2, arrb3,
depb3, ncb, neb, ngb, kKol, kk2, kb3, ilb,
nb, m)

call INIT1(job, nrb, iupb, igib2, igib3, ncybl,
ncyb2, noyb3, ngb2, ngb3, ngb2i, indbl,
igtb, igeb, igeab, igtib, ngstb)

call INIT2 (niib, ispb, igsb, ngsb, nigb, dtigb,
mab, dtuab, nuxb, douxb)

call INIT2(niib0, ispb0, igsb0, ngsb0, nighl,
drige0, nuabl, dtuabl, nuxb0, dtuxb0)

kfa(3) = 1

endif

if (norm3.eq.l) then

call RIGHTL(3, nwvol, dist, iveh, speed, jdg,
mailt, icl, lgi, ka3, axxrrb2, darxx2, m, m2,
ma, ntg, jvol, imgbl, kib2, kib3, job, nrb,
atb2, arrbl, depbl, arxb2, depb2, arrb3,
depb3, ilb, kbl, kb2, kb3, igb, irb, ncb,
neb, ngb, igib2, igib3, gsb2, gsb20, ngb2,

165

ngb3, noybl, ncyb2, ncyb3, nkab, nkab0,
ispb, ispb0, nuab, nuab0, dtuab, dtuabl,
sutsb, sutsb0, igsb, igsb0, gsib, gsibo,
nasb, ngsb0, rgsb2, rasb20, nigb, nigh0,
dtigb, dtigh0, nuxb, nmund0, dtuxb, dtuxbO,
jac, tuz, dtuz, waz, ib, 13, 14, 15, ngb2i,
nuzjbl, btuzjl, nb, iupb, indbl, igtb, gstb,
igeb, igeab, niib, niib0, igtib, gstib,
ngstb, rastb, jorb, mgc2, sutss, isps, nkas,
ismt, nibib, nibjb, ixt31, ixt32, ixt33,
Jxt31, jxt32, jxt33, icy, st, ipt, nac,
noff, krtbl, krxl, irs, ibs7, kibs7, jdum,
dyal, dya2, dya3, jvar)

endif

*kkkk Thkkk Kk k gk

Arterial, B direction

*dededek mft lane

if (kfa(4).eq.0) then

job2 = 0

call INIT(arrbll, depbll, arrb2l, depbll,
arrb3l, depb3l, ncbl, nebl, ngbl, kbll,
k21, kKb31, iib, b, m)

call INIT1(jobl, nlb, iupbl, iqgib2l, igib3l,
ncybll, neyb2l, ncyb3l, ngib2, nglb3,
nglb3i, indoll, igrbl, igebl, igeabl,
igtibl, ngstbl)

call INIT2 (niibl, ispbl, iqsb2, ngsb2, nigbl,
dtigbl, nuabl, dtuabl, nuxbl, dtuxbl)

call INIT2 (niib2, isphb2, igsb3, ngsb3, nigb2,
dtigh2, muab2, dtuab2, nuxb2, dtuwd2)

mp3 = 0

druxb3 = 0.

kfa(4) =1

endif

if (normd.eq.1l) then

call LEFTL(4, nvol, dist, iveh, speed, jdq,
malt, icl, lgi, ku4, arrlb3, darrll, m, ma,
ntg, jvol, imgh2, imgb3, kib2l, kib3l,
krtk2, krtb3, ixtd4l, ixtd42, ixtd3, jxcdl,
jxtd42, jxtd3, jobl, nlb, atb3, arrbll,
depbll, arrb2l, depb2l, arrb3l, depb3l, iib,
kbll, kb21, kb3l, igbl, irbl, ncbl, nebl,
ngbl, igib2l, iqib3l, gsb2l, gsb3l, nglb2,
nglb3, ncybll, ncyb2l, ncyb3l, nkabl, nkab2,
ispbl, ispb2, nuabl, nuab2, dtuabl, druab2,
sutsbl, sutsb2, igsb2, igsb3, gsibl, gsib2,
ngsb2, ngsb3, rgsb2l, rgsb3l, nigbl, nigh2,
dtigbl, dtigh2, moddl, mond2, dtuxbl,
dtwd2, jac, tuz, dtuz, wuz, ib, 23, 24, 25,
nglb3i, muzjb2, dtuzib2, nnb, iwpbl, indbll,
igtbl, gstbl, iqebl, igeabl, niib2, igtibl,
gstibl, ngstbl, rgstbl, jorbl, mge3l, mocll,
sutstl, isptl, nkatl, ismt, darrl3, job2,
nuzjb3, druzjb3, jork2, sutsrl, isprl,
nkarl, icz, st, ipt, nac, noff, krx2, klx3,
md3, douxb3, irr, irt, ibs5, kibsb5, ibs9,
kibs9, jdum, dvad, dvas, dvaé, jvar)

endif

*kkwk *hkkkhkkhkhkikdk

1lst Cross Street

norml
norm2
norm3
normd

OO OO

if (ixt33.eg.l.and.jxt33.eq.1.0r.
ixt43.eq.l.and.jxt43.eq.l.or.imqb3.eq.l)
then
if(ixt33.eqg.1l.and.jxt33.eq.1) then
Kitl =1
Jxt33 = 0
endif
if (imgb3.eqg.l) krtl = 1
if(ixt43.eg.l.and.jxt43.eq.1) then
ketl = 1
ixtd3 = 0
endif
write(kul5) (mj (imj), imj=1, 48)
write(kulS) (mj (imj), imj=49, 61)
write(kul5) (bj (ibj), ibj=1, 18)
rewind (kul5)
if (keetl.eq.1) krtl = 0
call CROSST(1, ku5, kué, tdc, carrli, darrl3,
arrrpd, arrx2, nvol, 1lri, noff, icl, jdq,

ipz, jpz, speed, ntg, mult, jvol, tuz, dtuz,

wuz, ib, mgel, mgell, klel, krtl, 30, 31,
32, 33, ispr, nkar, sutsr, isprl, nkarl,
sutsrl, dist, iwveh, ismt, irr, igr, irrl,
igrl, igf, kfa, ma, st, ipt, nca, 5, igir2,
gsr2, igsr, gsir, ngsr, rgsr2, igtr, gstr,
igtir, gstir, ngstr, rgstr, kir2, kir3, 6,
igir2l, gsr21, igsrl, gsirl, ngsrl, rgsr2l,
igtrl, gstrl, igrirl, gstirl, ngstrl,
rgstrl, kir2l, kir3l, carrl, cdepl, carr2,
cdep2, carr3, cdep3, darrl, ddepl, darr2,

Addep2, darr3, ddep3, isp, nka, suts, 0, isp,

nka, suts, ng2i, jdum, dyll, dyi2, dyi3,
dyl4, &y15, &16, jvar, ig, igbl)
read (kulb) (mj (imj), imj=1, 48)
read (kul5) (mj (imj), imj=49, 61)
read(kuls) (bj (ibj), ibj=1, 18)
rewind (kuls)
endif

rIk 2nd Cross Street — Frwwwaxx

if(ixt22.eqg.l.and.jxt22.eq.1.or.imgl.eq.1.or.kr

t2.eqg.l.or.
ixtl2.eg.l.and.jxtl12.eg.l.and. krx2.ne.1)
then
if(ixt22.eqg.1l.and.jxt22.eq.1) then
klt2 = 1
Jxt22 = 0
endif
if(imgl.eqg.l.and.krx2.ne.1) krt2 = 1
if (ixtl12.eqg.l.and.jxtl2.eq.1) then
krt2 = 1
Jxt12 = 0
endif
write(kul5) (mjl(imj), imj=1, 48)
write (kulS) (mjl(imj), imj=49, 61)
write(kul5) (bjl1{ibj), ibj=1, 18)
rewind (kuls) .
1f(krx2.eq.1) krt2 = 0
call CROSST(2, ku7, ku8, tde, darrr2, carrr2,
arrl3, arrlb3, nwvol, lri, noff, icl, jdq,

ipz, jpz, speed, ntg, mult, jvol, tuz, dtuz,

wuz, ib, me2, mge2l, klt2, krt2, 40, 41,
42, 43, isps, nkas, sutss, ispsl, nkasl,
sutssl, dist, iwveh, ismt, irs, igs, irsi,
igsl, igf, kfa, ma, st, ipt, nca, 7, igis2,
gss2, igss, gsis, ngss, rgss2, iqgts, gsts,
igtis, gstis, ngsts, rgsts, kis2, kis3, 8,

166

igis2l, gss21, igssl, gsisl, ngssl, rgss2l,
igtsl, gstsl, iqtisl, gstisl, ngstsl,
rgstsl, kis2l, kis3l, earrl, edepl, earr2,
edep2, earr3, edep3, farrl, fdepl, farr2,
fdep2, farr3, fdep3, isp2, nka2, suts2,
ngl3i, isphb2, nkab2, sutsb2, nglb3i, jdum,
dv2l, y22, dy23, dy24, dy25, &y26, jvar,
igl, igbl)

read(kul5) (mjl(imj), imj=1, 48)

read(kul5) (mjl(imj), imj=49, 61)

read(kulS) (bjl(ibj), ibj=1, 18)

rewind(kuls)

endif

FrExx 3rd Cross Street — *wrkawak

minv = min(ig(2), ig(3), igl(1l), igl(2),
191(3), igb(1), igh(2), igb(3), ighl(3))

mpdl = (minv-ig(1))* (minv-ig(2))* (minv-ig(3))

mpd2 (minv-1gl (1)) * (minv-igl (2)) * (minv-
igl(3))

md3 (minv-igb (1)) * (minv-igh(2)) * (mirrv-
igh(3))

mpdd = (mirv-ighbl (1)) * (minv-igbl (2)) * (minv-
ighl(3))

if (mpdl.eq.0)

if (mpd2.eq.0) norm2

if (mpd3.eg.0) norm3

if(mpdd.eq.0) normd

il

norml

TRl
S

if (igr1(2).gt.ig(1)+icl) nomt = 1

if(ixt3l.eg.l.and.jxt31.eq.1.and.k1x3.eq.0.0r. i
mb2.eq.1
.or.ixt4l.eq.l.and.jxt4l.eq.1.or. krtb3.eq.1)
then
if(ixt3l.eq.1.and.jxt31.eq.1l.and.k1x3.eq.0)
then
Kt3 =1
Jxt31l =0

endif

if(imgb2.eqg.l.or.ketb3.eq.1) krt3 = 1
if(ixt4l.eq.l.and.jxt4l.eq.1) then
krt3 = 1
jxt4l = 0

endif

write(kul5) (mj2 (imj), imj=1, 48)

write(kuls) (mj2 (imj), imj=49, 61)

write(kuls) (bj2(ibj), ibj=1, 18)

rewind (kuls)

if(kIx3.eq.1) k1t3 = 0

call CROSST(3, ku9, kul0, tdc, carrl3, darrll,
arrrb?, arrr4d, rnwol, lri, noff, icl, jdq,
ipz, jpz, speed, ntg, mult, jvol, tuz, dtuz,
waz, ib, mge3, mge3l, k1t3, krt3, 50, 51,
52, 53, ispt, nkat, sutst, ispti, nkatl,
sutstl, dist, iveh, ismt, irt, igt, irtl,
igtl, igf, kfa, ma, st, ipt, nca, 9, igit2,
gst2, igst, gsit, ngsu, rqst2, igtt, gstt,
igtit, gstit, ngstt, rgstt, kit2, kit3, 10,
iqgit2l, gst21, igstl, gsitl, ngsul, rgst21,
igetl, gsttl, iqritl, gstitl, ngsttl,
rgsttl, kit2l1, kit3l, garrl, gdepl, garr2,
gdep2, garr3, gdep3, harrl, hdepl, harr2,
hdep2, harr3, hdep3, ispb, nkab, sutsb,
ngb2i, ispb, nkab, sutsb, 0, jdum, dv31,
dy32, dy33, &34, dv35, d36, jvar, ig,
igbl)

read (kul5) (mj2(imj), imj=1, 48)
read(kul5) (mj2 (imj), imj=49, 61)
read (kuls) (bj2 (ibj), ibj=1, 18)
rewind (kuls)

endif

if (jvol.ge.nvol+400.and.kskip.ne.l) then

malld =ma(l) -1
ml0 = ma(2) ~ 1
mall =ma(3) - 1
bll = ma(4) - 1
mell = ma(s) - 1
mdl0 = ma(6) - 1
mcll = ma(7) - 1
mdll = ma(8) - 1
mel2 = ma(9) - 1
mdl2 = ma(l0) ~ 1

call NOWUP (depl, dep2, dep3, ismt, nvi,
mal0)

call NOWWUP(depll, dep2l, dep3l, ismt, nv2,
mol0)

call NOWUP(depbl, depk2, depb3, ismt, w3,
mall)

call NOWWUP(depbll, depb2l, depb3l, ismt,
nv4d, nbll)

call NOWUP(cdepl, cdep2,
mel0)

call NOVWUP(ddepl, ddep2,
md10)

call NOWWUP(edepl, edep2,
mcll)

call NOWWUP(fdepl, fdep2,
mdll)

call NOVWUP (gdepl, gdep2,
mel2)

call NOWWUP (hdepl, hdep2,
mdl2)

Wi = NVIHNV2+nv3+nv4AHIVSHnvEe+nv7HvE+nvo
+v10

cdep3, ismt, nvs,

ddep3, ismt, nveé,

edep3, ismt, nv7,

fdep3, ismt, nvs,

gdep3, ismt, nv9,

hdep3, ismt,

call findep(dep2, malld)
call findep(dep2l, mpbl0)
call findep(depb2, mall)
call findep(depb2l, mbll)
call findep(cdep2, mcl0)
call findep(ddep2, mdl0)
call findep(edep2, mcll)
call findep(fdep2, mdll)
call findep(gdep2, mcl2)
call findep(hdep2, mdl2)
dep(l) = dep2(mald)
dep(2) = dep2l (mbl0)

dep(3) = depb2 (mall)
dep(4) = depb2l (mbll)
dep(5) = cdep2 (mcl0)
dep(6) = Adep2 (mdl0)
dep(7) = edep2 (mcll)
dep(8) = fdep2 (mdll)
dep(9) = gdep2 (mcl2)

dep(10) = hdep2 (mdi2)
call piksrt (10, dep)
jmin = 1

if (dep(8) .gt.dep(7)+1000.0r.ksk.ge.4.and. jmin.e

q.7) jnu_n =8

nvio,

167

1f{dep(7) .gt.dep(6)
q.6) jmin = 7

if(dep(6) .gt.dep(5)+1000.0r.ksk.ge.4.and. jmin.
Gg.5) Jmin = 6

1f(dep(5) .gt.dep(4)+1000.0r.ksk.ge.-4.and.jmin.
q.4) jmin = 5

if(dep(4) .gt.dep(3)+1000.0r.ksk.ge.4.and. jmin.
q.3)]mll'l =4

if(dep(3) .gt.dep(2)+1000.0r.ksk.ge.4.and. jmin.
q.2) jmin = 3

if(dep(2) .gt.dep(1)+1000.0r.ksk.ge.4.and. jmin.
g.1) jmin = 2

+1000.0or.ksk.ge.4.and. jmin.

220 depmin = dep(jmin)
diffd = abs(deomin - depnp)
if(diffd.1e.0.01) ksk = ksk + 1

if(diffd.gt.0.01) then
call NOVSIM(dep2, mall, depmin, novl)
call NOVSIM(dep2l, mbl0, depmin, nov2)
call NOVSIM(depb2, mall, depmin, nov3)
call NOVSIM(depb2l, mbll, depmin, novd)
call NOVSIM(cdep2, mcl0, depmin, novs)
call NOVSIM(ddep2, mdl0, depmin, nove)
call NOVSIM(edep2, mcll, depmin, nov7)
call NOVSIM(fdep2, mdll, depmin, nov8)
call NOVSIM(gdep2, mcl2, depmin, nov9)
call NOVSIM(hdep2, mdl2, depmin, novl0)
novt = novl+Hov2+nov3+nov4+novS+nove+nov7

+nov8+nov9+novi0

if (novt.ge.nvol+mwu) then
kSklp =1
go to 250
endif
endif
degnp = depmin
endif

250 if(kskip.eq.1l) then
do 260 time = depmin, depmin-1000,

call NOVSIM(dep2, mall, time, novl)
call NOVSIM(dep2l, mbl0, time, nov2)
call NOVSIM{depb2, mall, time, nov3)
call NOVSIM(depb2l, mbll, time, nové)

(

(

(

(

-1.0

call NOVSIM{cdep2, mcl0, time, novb)
call NOVSIM(ddep2, mdl0, time, nové)
call NOVSIM(edep2, mcll, time, nov7)
call NOvSIM{fdep2, mdll, time, nov8)
call NOVSIM{gdep2, mcl2, time, nov9)
call NOVSIM(hdep2, mdl2, time, novll)
nsim = novl+nov2+nov3+nov4+novS+nove+nov7
+nov8+nov3+nov10-mmwu

if (nsim.le.vol) go to 270

260 continue

endif

if(jvol.lt.nvol+5000) go to 1000

270smtj = time
nesl = novl - nvl

if(nesl.1t.0) nosl = 0
nos2 = nov2 - nv2
nos3 = nov3 - nv3
nos4d = novd - nvd
if(nos4.1t.0) nosd = 0
nos5 = novs - nvs
nos6 = nové - nvé
if(nos6.1t.0) nosé = 0

nos7 = nov7 - nv7
nos8 = nov8 - nvs
if(nos8.1t.0) nos8 =0
nos9 = nov9 - nvd
if(nos9.1t.0) nos9 = 0
nosl0 = novli0 - nvl0

**¥xxx* Print queue spillback statistics

**arterial, right lane (A dirction)

smpd = smtj - ismt

joy = int(ampd/icl) + 1

call PRNQS(kul, 2, icl, lgi, iqi2, @s2, joy,
igs, gsi, ngs, rgs2, prgs, pgs, pgsn, ptas,
ismt, smtj, mult)

call PRNQST(kul, 2, igt, gst, igti, gsti, jev,
ngst, rgst, prgst, pgst, pgstn, ptgst, ismt,
smtj, malt)

call PRNQS(kul, 3, icl, lgi, iqi3, @s20, joy.
igs0, asi0, nas0, rgs20, prgsl, pasl, pasnl,
ptasl, ismt, smty, malt)

**arterial, left lane (A dirction)

call PRNQS(ku2, 2, icl, lgi, igi2l, gs21, jev,
igs2, gsil, ngs2, rgs2l, prgs2, pas2, pasn2,
ptgs2, ismt, smtj, mult)

call PRNQS (ku2, 3, icl, igi, igi3l, gs31, jov,
igs3, gsi2, ngs3, rgs3l, prgs3, pas3, pasn3,
ptgs3, ismt, smtj, mult)

call PRNQST(ku2, 3, iqtl, gstl, iqtil, gstiil,
Jjoy, ngstl, rgstl, prgst3, past3, pgstn3,
ptgst3, ismt, smtj, mult)

**arterial, right lane (B dircticn)

call PRNQS(ku3, 2, icl, lgi, igib2, asb2, jcy.
igsb, gsib, ngsb, rgsb2, brgs, bas, basn,
btgs, ismt, smtj, mult)

call PRNQST (ku3, 2, igtb, gstb, iqgtib, gstib,
jey, ngstb, rgstb, brgst, bgst, bgstn,
btgst, ismt, smtj, rult)

call PRNQS (ku3, 3, icl, lgi, iqib3, gsb20, jov,
igsb0, gsib0, nqgsb0, rqsb20, brgsl, bgsl,
bgsnl, btgsl, ismt, smtj, mult)

**arterial, left lane (B dirction)

call PRNQS (ku4, 2, icl, lgi, igib2l, gsb21,
jev, igeb2, gsibl, ngsb2, rgsb2l, bras2,
bas2, bgsn2, btgs2, ismt, smtj, mult)

call PRNOS (kud, 3, icl, lgi, igib31l, gsb3l,
Jjcoy, igsb3, gsib2, ngsb3, rgsb3l, brgs3,
bgs3, bgsn3, btgs3, ismt, smtj, mult)

call PRNQST(kud, 3, igtbl, gstbl, igtibl,
gstibl, joy, ngstbl, rqstbl, brgst3, bgst3,
bgstn3, btgst3, ismt, smtj, mult)

**cross street 1, left lane

call PRNQS(kuS, 3, icl, 1ri, igir2, gsr2, joy,
igsr, gsir, ngsr, rgsr2, praa, pE@, pana,
ptoa, ismt, amtj, milt)

call PRNQST(ku5, 3, iqgtr, gstr, igtir, gstir,
jey, ngstr, rgstr, prgta, pqta, patna,
ptata, ismt, smtj, malt)

**cross street 1, right lane

call PRQS(kub, 3, icl, lri, igir2l, gsr2l,
Jey, igsrl, gsirl, ngsrl, rgsr2il, progl,
poal, panal, ptgal, ismt, smtj, mult)

168

call PRNQST (ku6, 3, igtrl, gstrl, igtirl,
gstirl, jcy, ngstrl, rgstrl, prgtal, pqgtal,
pgmal, ptgtal, ismt, smtj, mult)

**cross street 2, left lane

call PRNQS(ku7, 3, icl, lri, igis2, gss2, joy,
igss, gsis, ngss, rqss2, prdo, pab, panb,
ptab, ismt, smtj, mult)

call PRNQST(ku7, 3, igts, gsts, iqgtis, gstis,
jey, nasts, rgsts, prgrb, patb, pqtrb,
ptatb, ismt, smtj, mualt)

**cross street 2, right lane

call PRNQS(ku8, 3, icl, 1ri, igis2l, gss21,
jov, igssl, gsisl, ngssl, rgss2l, ptabl,
pabl, panbl, ptgbl, ismt, smtj, mult)

call PRNQST (ku8, 3, iqtsl, gstsl, igtisl,
astisl, joy, ngstsl, rqstsl, pratbl, patbl,
pdtnbl, ptatbl, ismt, smtj, mult)

**cross street 3, left lane

call PRNOS(kug, 3, icl, 1ri, iqit2, gst2, jay,
igst, gsit, ngsu, rgst2, prge, pac, panc,
ptge, ismt, smtj, mult)

call PRNQST(ku9, 3, igtt, gstt, igtit, gstit,
joy, ngstt, rgstt, prgte, pate, pgrnc,
ptate, ismt, smtj, malt)

**cross street 3, right lane

call PRNQS(kul0, 3, icl, lri, igit2l, gst21,
joy, igstl, gsitl, ngsul, rgst2l, pracl,
pacl, pancl, ptgel, ismt, smtj, mult)

call PRNOST (kul0, 3, iqttl, gsttl, igtitl,
gstitl, joy, ngsttl, rqsttl, praccl, pgtcl,
patncl, ptgtcel, ismt, smtj, mult)

*hhkKh

if(mult.eq.1l) then

¢ write(*, 310) ip*incre, jp*incre
write(kul, 310) ip*incre, jp*incre

310 format(/' offset2=', i3, ', offset3=',
i3)
ptal(ip, jp) = ptgs + ptast + ptagsl
pta2(ip, jp) = ptgs2 + ptas3 + ptgst3
pta3(ip, jp) = btgs + btgst + btgsl
ptad (ip, jp) = btgs2 + btgs3 + btagst3
ptcl(ip, Jp) = ptga + ptata + ptgal + ptatal
pte2(ip, jp) = ptgb + ptatb + ptgbl + ptatbl

ptc3(ip, jp) = ptac + ptatc + ptacl + ptgtcl
ptat(ip, jp) = ptal(ip, jp) + pta2(ip, jp) +
pta3(ip, jp) + ptad(ip, jp)

ptet(ip, ip) = ptellip, jp) + ptc2(ip, jp) +
ptc3 (ip, jp)

ptst(ip, jp) = ptat(ip, ip)
spst (ip, jp) = sapd
mvu(ip, jp) = mwu

+ ptet(ip, jp)

mar(ip, jp) = nosl
mal{ip, jp) = nos2
marb(ip, jp) = nos3
malb(ip, jp) = noséd
mell (ip, jp) = nos5
merl (ip, jp) = nos6
mel2 (ip, jp) = nos7
mer2(ip, jp) = nos8
mel3 (ip, Jp) = nos9

mer3 (ip, jp) = nosl0

write(kul, 320) ptat(ip, jp)., ptctiip, p).
ptst(ip, Jjp)., smpd

320 format(' P(A)=', £5.2, ' P(C)=', £5.2,
P(T)=', £5.2, ' Pd=', £6.0)
endif

Fk KKk

if (mult.eqg.0) then
write(kul, 330) smpd

330 format(2x, 'Simulation Period(Total):’,
£6.0, ' sec')
write{kul, 340) nvl, nv2, nv3, nvd, nv5, nvé,
nv7, nvg, nv9, nvll
write(kul, 350) nosl, nos2, nos3, nosé4, nos5,
nosé, nos7, noss8, nos?, noslid

340 format(/2x, 'Wi(AlR, AlL, A2R, AZL,

ClL, ClR, 2L, CZR, ', ' C3L, v, !
C3R) :', /4x, 9(i4, ', '), i4)

350 format(/2x, 'Si(AlR, AlL, A2R, A2L,
ClL, C1rR, C2L, CZ2R, ', ' 3L, .,
C3R) :', /4x, 9(i4, ', '), i4)
jtot = mwu + nsim
write(kul, 355) rmwu

355 format(/2x, 'V (warmup) : ', i4, '
vehicles')
write(kul, 357) nsim

357 format(/2x, 'V (simulation) : ', i4, '
wvehicles')
write(kul, 360) jtot

360 format(/2x, 'V {(total) : ', i4, '
vehicles')

endif

420 continue
410 continue
400 continue

*xkxk Print summarized outputs

if(mult.eqg.l) then

write(kuS, 510)

510 format (/2X, 'No.of queue spillback per
cycle')

call PRNOPL (ku5, 1, 1, incre, ioffl, ioff2,
joffl, joff2, ptal)

call PRNOPL(ku5, 1, 2, incre, ioffl, ioff2,
joffl, joff2, pta2)

call PRNOPL(ku5, 1, 3, incre, ioffl, ioff2,
joffl, joff2, pta3)

call PRNOPL(ku5, 1, 4, incre, ioffl, ioff2,
joffl, joff2, ptad)

call PRNOPL(ku5, 2, 1, incre, ioffl, ioff2,
joffl, joff2, ptcl)

call PRNOPL(ku5, 2, 2, incre, ioffl, ioff2,
joffl, joff2, ptc2)

call PRNOPL(ku5, 2, 3, incre, ioffl, ioff2,
joffl, joff2, ptc3)

call PRNOP1(ku5, 3, 9, incre, ioffl, ioff2,
joffl, joff2, ptat)

call PRNOPL (ku5, 4, 9, incre, ioffl, ioff2,
joffl, joff2, ptct)

call PRNOPL(ku5, 5, 9, incre, ioffl, ioff2,
Joffl, joff2, ptst)

call PRNOPL (ku2, 6, 9, incre, ioffl, ioff2,
joffl, joff2, spst) .

call PRNOPIL(ku2, 5, 9, incre, ioffl, ioff2,
joffl, joff2, ptst)

169

write(ku6, 520)

520 format(/2X, 'No.of vehicles simulated')

call PRNOP2 (ku6, 1, incre, ioffl, ioff2, joffl,
joff2, mar)

call PRNOP2 (ku6, 2, incre, ioffl, ioff2, joffil,
Jjoff2, mal)

call PRNOP2 (kué, 3, incre, ioffl, ioff2, joffl,
Jjoff2, marb)

call PRNOP2 (ku6, 4, incre, iloffl, ioff2, joffl,
joff2, malb)

call PRNOP2(ku6, 5, incre, ioffl, ioff2, joffl,
joff2, mcll)

call PRNOP2 (ku6, 6, incre, ioffl, ioff2, joffl,
joff2, mcrl)

call PRNOP2 (ku6, 7, incre, ioffl, ioff2, joffl,
Joff2, mcl2)

call PRNOP2 (ku6, 8, incre, ioffl, ioff2, joffl,
joff2, mcr2)

call PRNOP2 (ku6, 9, incre, ioffl, ioff2, joffl,
Jjoff2, mcl3)

call PRNOE2 (ku6, 10, incre, ioffl, ioff2,
joffl, joff2, mcr3)

call PRNOP2(ku2, 99, incre, ioffl, ioff2,
joffl, joff2, mwu)

endif

stop
ad

FrkkhkrhhhkAkkrkdhkdhkrhdrrkrrrkrhrrhhrhhkrrhokdrhhdr
hkkkdkk SmmEs *hkkkhkkhhhhhrhkhkrkhrkhhkkdrk
P R R R e S T T L T e S e e S S e Tt

subroutine RIGHTL(jl, nvol, dist, iveh, speed,
Jdg, mult, icl, 1gi, kul, arrr2, carrr2, m,
ml, ma, ntg, jvol, imgl, ki2, ki3, jo, nr,
at2, arrl, depl, arr2, dep2, arr3, dep3, i,
k1, k2, k3, ig, ir, nc, ne, ng, igi2, iqgi3,
as2, @20, nqg2, ng3, ncyl, ncy2, ncy3, nka,
nkaQ, isp, isp0, mua, mual, dtua, drual,
suts, sutsO, igs, igs0, gsi, gsil, ngs,
ngs0, rgs2, rqgs20, nig, nigo, deig, driqo,
mx, mux0, dtux, dtux0, jac, tuz, dtuz, wuz,
ib, jwhl, jwh2, jwh3, nq2i, nuzjl, deuzil,
n, iup, indl, igt, gst, ige, igea, nii,
nii0, igti, gsti, ngst, ragst, jor, mgc2,
sutss, isps, nkas, ismt, nibi, nibj, ixtl,
ixt2, ixt3, jxtl, jxt2, jxt3, icy, st, ipt,
nac, noff, krt2, krxl, irs, ibs7, kibs7,
j&um, &vl, dv2, &3, jvar)

dimension arrl(0:2000), depl(0:2000),
arr2(0:2000)

dimension dep2(0:2000), arr3(0:2000),
dep3 (0:2000)

dimension arrr2(0:500), carrr2(0:500)

dimension ki2(0:2000), ki3 (0:2000), zz(0:100),
zsut (0:100)

dimension dist (20}, iveh(20), ir(20), ig(20),
irs(20)

dimension gs2(80), gs20(80), gst(80), gsti(80)

dimension nka(100), nka0(100), nkas(100)

dimension gsi(80), gsi0(80), rgst(80)

dimension suts(0:100, 0:60), suts0(0:100, 0:60)

dimension rgs2(80), xrgs20(80), sutss(0:100,
0:60)

dimension tuz(15), dtuz(15), wuz(15, 80),
ib(15)

dimension ma(10), st(15), noff(20)
dimension dy1(0:60), &2(0:60), &y3(0:60)

do 100 m = ma(jl), ma(jl)+ntg
if(ig(2).ge.ismt) jvol = jvol + 1

if (ixtl.eq.1) go to 145
if(ixt2.eg.l.and.imgl.ne.1) go to 150
if(ixt3.eq.1) go to 151

ki2 (m) 0
ki3 (m) jo
IF(nr.eq.0) then
arrl(m) = 2.0 * (m-i)

C

C———-- Departure time at intersection 1 -~----
C

if(jl.eq.1) dicx = 41

Jwh = jwhi

call DEFQLS(k1, ig(1), ir(l), zz, depl, m, icl,
arrl, nc, arr2, dep2, igi2, gs2, ki2, nq,
ncyl, iveh(l), zsut, nka, isp, nua, dtua,
suts, igs, gsi, ngs, rqs2, niq, dtiq, jdg,
mx, dtux, icx, jwh, jac, ixtl, tuz, dtuz,
waz, ib, 0, j1, 14, 15, st, ipt, jdum, dyl,
jvar)

icx = 0

if(imgl.eq.l) then
imgl = 0
jor = 0
call UPDATE(ne, k2, ig(2), ir(2), zz, dep2,
m, icl, ncy2)
=k -1

endif

if(ixtl.eq.l) jxtl =1
if(ixtl.eg.1l) go to 110
145 if(ixtl.eqg.l) ixtl = 0

ELSEIF (iup.eqg.l) then
arrl(m) = parrl
depl(m) = pdepl

nr =0
iup = 0
ige = 0
igea = 0
ELSE

arrl(m) = parrl
depl (m) = pdepl
ENDIF
if(imgl.eq.1l) then
imgl =0
jor = 0
call UPDATE(ne, k2, ig(2), ir(2), zz, dep2,
m, icl, ncy2)
kK=k2-1
endif
if(jl.eqg.1l) icx = 89
call ARRQLA(arr2, dep2, depl, m, nc, dist(l),
speed, at2, arrr2, i, n, nr, iup, ki2, ng2i,
indl, igt, ast, ige, igea, iveh(l), iex,
nka, isp, suts, nii, iqti, gsti, niq, driqg,
ngst, rast, jdg, amp, icw, jac, jdum, jvar)
ix =0

170

if (depl(m) .gt.ir(l)+icl) then
call UPDATE(nc, k1, ig(l), ir(1), zz, depl,
m, icl, neyl)
ixtl =1
nig =0
go to 110
endif

jwh

jz2 14

jz3 = 15

if(jl.eq.l) then
jz2
jz3

endif

call DEPQLS(k2, ig(2), ir(2), zz, dep2, m, icl,
arr2, ne, arr3, dep3, igi3, gs20, ki3, ng3, |
ncy2, iveh(l), zsut, nka0, isp0, nua0, !
dtual, suts0, igs0, geil, ngs0, rgs20, niqgo,
dtiq0, jdg, nmux0, dtux0, icx, jwh, jac,
ixt2, tuz, dtuz, wuz, ib, 0, 13, jz2, jz3,
st, ipt, jdum, &2, jvar)

ix =0

if(ixt2.eq.1) then
jor = 0 ‘

endif |

|
|

Jwh2

N g

8
7

non

mprod = (nual-1) * (nig0-1)

call UPNKA(k2, ig(2), ir(2), zz, dep2, m, jdq,
lgi, icl, arr2, ne, nq2i, ng3, ncy2, zsut,
iveh(1l), nka, isp, suts, mprod, jac, tuz,
dtuz, nibi, nibj)

if(ixt2.eq.1) jxt2 = 1
if(ixt2.eq.1) go to 110
150 if(ixt2.eq.1l) then

ixt2 = 0

if(jl.eq.l) kxx1 = 0

tuz7 = tuz(7)

if(jl.eqg.l.and.tuz7.gt.ig(2) .and.ig(2)+icl.1
t.irs(2)) then
tuz7 = wuz (7, ibs7)
1f(dep2 (m) .gt .wuz (7,
ibs7) .and.dep2 (m) . 1t.waz (7, ibs7+1))
ibs7 = ibs7 + 1
tuz7 = wuz(7, ibs7)

then

endif
if(tuz7.gt.ig(2)+icl) go to 120
kKibs7 = 1

endif

if(jl.eq.l.and. (tuz7.gt.ig(2) .or.tuz(8) .gt.i
g(2))) then
jz =7
if(tuz7.1t.tuz(8)) jz = 8
if(jz.eq.7) then
ibs7 = ibs7 + 1
kibs7 = 0
endif
dtuz(jz) = tuz7 - ig(2)

dep2 (m) = tuz7 + 2.04
if(jz.eq.8) dtuz(jz) = tuz(8) - ig(2)
if(jz.eq.8) dep2(m) = tuz(8) + 2.04
dslgi = lgi - dtuz(jz)
jveh = iveh(l) * 2
if(dslgi.lt.jveh) nibj = 1
ircll = ir(2)+icl-ipt
if(dep2(m) .ge.ircll) then
call UPDATE(ne, k2, ig(2), ir(2), =z=z,
dep2, m, icl, ncy2)
call UPDATE(ng, k3, ig(3), ir(3), z=z,
dep3, m, icl, ncy3)
nka(isp) =
isp = isp + 1
nkal (isp0) = 0
isp0 = isp0 + 1

ixt2 = 1
krt2 = 1
krxt = 1
go to 110
endif
endif

endif

120 if(nr.eq.0) then

if((nac.eg.l.and. (k2.eg.2.0r. jdq .1l and.
(k2.eq.4.0or.k2.eq.5))) .or. (nac.eg.2.and.
(k2eq2ork2eq3or3dqeql Land. (k2.eq.
Sork2eq60rk2eq80rk2eq9))) then
jo=do+ 1
if(jl.eq.l) then
carrr2(jo) = dep2(m)
if (mgc2.eq.iveh (1) .or.jor+mge2. eq.iveh (1))
then

sss = st(8)
ssd = sss - dep2(m)
if(sss.ge.ir(2)+icl) then
imgl =
elseif(ssd.gt.0) then
mix0 = 1
dtux0 = ssd
endif
if(ssd.gt.1gi-20) nibi = 1
endif
endif
jor = jor + 1
go to 155
endif
endif

f{dep2 (m) .1t.arr2(m)) dep2(m) = arr2(m)

call ARRNT (arr3, dep3, dep2, m, ne, dist(2),
speed, ng3, jac, Jjdum, jvar)

C

Commme Departure time at intersection 3 ------
C

Jwh = jwh3 .

call DEPART(kK3, ig(3), ir(3), zz, dep3, m, icl,
arr3, ng, ncy3, jac, ixt3, jwh, ipt, jdum,
dy3, jvar)

mprod = 1

if(jl.eq.l) then

endif

call UPINKA(K3, ig(3), ir(3), zz, dep3, m, jdg,
1gi, icl, arr3, ng, ng3, 0, ncy3, zsut,
iveh(l), nka0, isp0, suts0, mprod, jac)

if(ixt3.eq.1l) jxt3 =
if(ixt3.eq.1l) go to 110
151 if{ixt3.eq.1) ixt3 = 0

C

Commm= Print arrival and departure time at
each intersection —---------

C

155 if(nr.ne.0) then
parrl = arrl(m)

pdepl = depl(m)
arrl(m) = 0.
depl m) = 0.
endif
ki3p = jo

if(dep3 (m).1lt.axrr3(m)) dep3(m) = arr3(m)

if(mult.eq.0) then
call FRINT (arrl, depl, arxr2, dep2, arr3, dep3s,
kul, m, i, jo, ng2i)
endif
if(ncy2.1t.isp) then
do 160 ik = isp, isp
nka(ik) = nka(ik) + 1
160 continue
else
do 161 ik = isp, ncy2
nka(ik) = nka(ik) + 1
161 continue
endif

if(ki3p.ne.ki3(m)) go to 164
if(ncy3.1t.isp0) then
do 162 ik = isp0, isp0
nka0(ik) = nkaO(ik) + 1
162 continue
else
do 163 ik = isp0, ncy3
nkaO(ik) = nkaO(ik) + 1
163 continue
andif
164 continue

if(nr.ne.0) then
arrl(m) = parrl
depl (m) = pdepl
endif

if(imgl.eqg.1l) go to 110
100 continue

110ma(jl) =m
if(ig(2).ge.ismt) jvol = jvol - 1

if(imgl.eqg.l.and.ixtl.ne.l.and.ixt2.ne.l.and.ix

t3.ne.1l) then
ma(jl) =m+ 1
if(ig(2).ge.iamt) jvol = jvol + 1

endif

retum

ad

dhkhkk

subroutine LEFTL(j1, nvol, dist, iveh, speed,
jdg, mult, icl, lgi, ku2, arrl3, carrli, m,
ma, ntg, jvol, img2, img3, ki2l, ki3l, krt2,
kre3, ixtl, ixt2, ixt3, jxtl, jxt2, jxt3,
jol, nl, at3, arrll, depll, arr2l, dep2l,
arr3l, dep3l, ii, k11, k21, k31, igl, irl,

ncl, nel, ngl, igi2l, igi3l, gs21, gs31,
ngl2, ngl3, ncyll, ncy2l, ncy3l, nkal, nka2,
ispl, isp2, rmal, nmua2, drual, dtua2, sutsl,
suts2, igs2, igs3, gsil, gsi2, ngs2, ngs3,
rgs2l, rgs3l, nigl, nig2, dtigl, dcig2,
mixl, nux2, douxl, dtux?, jac, tuz, dtuz,
wuz, ib, jwhl, jwh2, jwh3, ngl3i, nuzj2,
dtuzj2, nn, iupl, indll, igtl, gstl, igel,
igeal, nii2, igtil, gstil, ngstl, rgstl,
jorl, mgel, mge2, sutsr, ispr, nkar, ismt,
carxl3, jo2, muzj3, dtuzj3, jor2, sutst,
ispt, nkat, icz, st, ipt, nac, noff, krx2,
k1x3, nux3, dtw3, irr, irxt, ibs5, kibss,
ibs9, kibs9, jdum, dvl, &2, dv3, jvar)

dimension arrll(0:2000), depll(0:2000),
arr21(0:2000)

dimension dep21(0:2000), arr31(0:2000),
Qep31(0:2000)

dimension arrl3(0:500), carrll(0:500)

dimension ki21(0:2000), ki31(0:2000),
2zz{0:100), zsut(0:100)

dimension dist(20), iveh(20), irl(20), igl(20),
irr(20), irt(20)

dimension ¢s21(80), gs31(80}, gstl(80),
astil(80)

dimension nkal (100}, nka2(100), nkar(100),
nkat (100)

dimension gsil(80), @si2(80), rgstl(80)

dimension sutsl(0:100, 0:60), suts2(0:100,
0:60)

dimension sutsr(0:100, 0:60), sutst(0:100,
0:60)

dimension rgs21(80), rgs31(80), carrl3(0:500)

dimension tuz(15), dtuz(1l5), wuaz (15, 80),
ib(15)

dimension ma(10), st(15), noff(20)

dimension dy1(0:60), dy2(0:60), dy3(0:60)

do 200 m = ma(jl), ma(jl)+ntg
if(igl(2) .ge.ismt) jvol = jvol + 1

if(ixtl.eq.l.and.img2.ne.l) go to 245
if(ixt2.eqg.1l) go to 250
if(ixt3.eg.l.and.img3.ne.l) go to 251

ki2l(m) = ii + jol
ki3i{m) = jol
C

IF(nl.eq.0) then
arrll(m) = 2.0 * (m-ii)

Crrmomm Departure time at intersection 1 ---—-

if (img2.eq.1) then
im2 = 0
call UPDARTE(ncl, k11, igl(l), irl(l), =z=z,
depll, m, icl, ncyll)
kil = k11 - 1
jorl =0
endif

Jwh

jz2 = 14

jz3 = 15

if(jl.eq.4) then
jz2 = 10

Jwhi

172

jz3 =9

endif

call DEPQLS(k11, igl(l), iri(l), zz, depll, m,
icl, arrll, ncl, arx2l, dep2l, igi2l, gs21,
ki2l, ngl2, ncyll, iveh(l), zsut, nkal,
ispl, nual, dtual, sutsl, igs2, gsil, ngs2,
rgs2l, nigl, dtigl, jdg, nuxl, dtuxl, icx,
jwh, jac, ixtl, tuz, dtuz, wuz, ib, 0, 13,
jz2, jz3, st, ipt, jdum, dvl, jvar)

if(ixtl.eqg.1l) then

jorl = 0
gxtl =1
endif

if(ixtl.eq.l) then

if(imy3.eg.1) then
img3 = 0
call UPDATE(ngl, k31, igl(3), irl(3), ==z,
dep3l, m, icl, ncy3l)

k31 = k31 -1
jor2 = 0
endif
go to 210
endif

if(ixtl.eqg.1l) go to 210
245 if(ixtl.eq.l) then
ixtl
tuz9

0
tuz(9)

Hoh

if(jl.eg.4.and.tuz9.gt.igl (1) .and.igl (1)+icl
Jdt.irt(2))then
tuzd = waz (9, ibs9)
if(depll (m) .gt.wuz (9,
ibs9) .and.depll(m).lt.wuz (9, ibs9+1))
then

ibe9 = ibs9 + 1
tuzd = wuz(9, ibs9)
endif

if (tuz9.gt.igl(1)+icl) go to 220
kibs9 = 1
endif

1f(jl.eg.4.and. (tuz9.gt.igl (1) .or.tuz(10) .gt
.igl(1))) then
jz =9
if(tuz9.1t.tuz(10)) jz = 10
if(jz.eq.9) then
ibs9 = ibs9 + 1
kibs9 = 0
endif
depll(m) = tuz? + 2.04
if(3z.eq.10) depll(m) = tuz(10) + 2.04
ircll = irl(1)+icl-ipt
irel3 = irl(3)+icl-ipt
1f(depll(m).ge.ircll) then

if(jl.eq.4.and. (tuz(5).gt.igl(3) .or.tuz(6).g
t.igl(3))) then
jz =75
if(jz.eq.5) then
ibs5 = ibs5 + 1
kibsh = 0
endif
if(tuz(5).1lt.tuz(6)) jz = 6
dep3l(m) = tuz(5) + 2.04

if(jz.eq.6) dep3l(m) = tuz(6)
ircls = irl(3)+icl-ipt
1f(dep3l(m) .ge.ixcl3) then

+ 2.04

krx2 = 1
klx3 = 1
endif
endif

call UPDATE(ncl, k11, igl(l), irl{l), =zz,
depll, m, icl, ncyll)

call UPDATE(nel, k21, igl(2), irl(2), zz,
dep2l, m, icl, ncy2l)

call UPDATE(ngl, k31, igl(3), ixl(3), zz,
dep3l, m, icl, ncy31)

nkal(ispl) = 0
igpl = ispl + 1
nka2{isp2) = 0
igp2 = igp2 + 1
ixtl = 1
jxtl = 1
kxrt3 = 1
go to 210
endif
endif

endif

C

Cm——— Arrival time at intersection 2 ---——----

C

220 if((nac.eq.l.and. (kll.eq.2.0r.jdg.eq.11.
and. (k11.eqg.4.0r.k1l.eq.5))).or. (nac.eg.2.an
d. (kll.eg.2.or.kll.eq.3.or.jdg.eq.1l.and.
(kll.eq.5.0r.k1l.eq.6.0r.k1l.eq.8.0r.kll.eq.

9)))) then

jol = jol + 1
if(jl.eqg.4) then
carrll (jol) = depll(m)
if (mgel.eq.iveh(l) .or.jorl+mgel.eq.iveh(1))
then

sss = st{10)
ssd = sss - depll{m)
if (sss.ge.irl(1)+icl) then
img2 = 1
elseif(ssd.gt.0) then
mxl = 1
dtuxl = ssd
endif
endif
endif
jorl = jorl + 1
go to 255

endif

*hkrkREK

115call ARRNIE(arr2l, dep2l, depll, m, ncl,
dist(l), speed, ngl2, iveh(1l), nkal, ispl,
sutsl, ki2l, jac, jdum, jvar)

[

[Departure time at intersection 2 --w----
C

Jwh = jwh2

if(jl.eqg.4) icx = 3

call DERQLS(k21, igl(2), irl(2), zz, dep2i, m,
icl, arr2l, nel, arr3l, dep3l, igi3l, gs31,
ki3l, ngl3, ncy2l, iveh(l), zsut, nka2,
isp2, mua2, dtua2, suts2, igs3, gsi2, ngs3,
rgs3l, nig2, dtiqR, jdq, mux2, dtux2, icx,
jwh, jac, ixt2, tuz, dtuz, wuz, ib, 0, ji,
14, 15, st, ipt, jdum, dy2, jvar)

iex = 0

173

mprod = (nua2-1)*(nii2-1)* (nig2-1)

call UPDNKA(k21, igl(2), irl(2), zz, dep2l, m,
jdq, 1lgi, icl, arx2l, nel, ngl2, ngl3,
ncy2l, zsut, iveh(l), nkal, ispl, sutsl,
mprod, jac)

if(img3.eqg.l) then
img3 = 0
call UPDATE(ngl, k31, igl(3), irl(3), =zz,
dep3l, m, icl, ncy31)

k31 = k31 - 1
endif
C
[Arrival time at intersection 3 --—-——-
C

if(ixt2.eq.1) jxt2 = 1
if(ixt2.eq.1l) go to 210
250 if(ixt2.eq.1l) ixt2 =0
ELSETF (iupl.eq.1l) then
arrll(m) = parrll
depll(m) = pdepll
arr2l(m) = parr2l
dep2l(m) = pdep2l
nl =0
iupl = 0
igel = 0
igeal = 0

if{imy3.eq.1l) then
img3 = 0
call UPDATE(ngl, k31, igl(3), irl(3), =z=z,
dep3l, m, icl, ncy3l)
k31 = k31 -1
endif

1f(dep2l(m).1lt.arr2l(m)) dep2l(m) = arr2l(m)

if(jl.eq.2) icx = 36
call ARRQIA (arr3l, dep3l, dep2l, m, nel,
dist(2), speed, at3, arri3, ii, mn, nl,
iupl, ki3l, ngl3i, ind1l, igtl, gstl, igel,
igeal, iveh(l), icx, nka2, isp2, suts2,
nii2, igtil, gstil, niqg2, dtig2, ngstl,
rgstl, jdg, armp, icw, jac, jdum, jvar)
icx =0
if(indll.eq.1l) then
arrll{m) = parrll
depll(m) = pdepll
arr2l(m) = parr2l
dep2l(m) = pdep2l
ni=0
iupl = 0
igeal
indil = 0
endif

H
o

C——— Departure time at intersection 3 --——---

Jwh = jwh3
if(jl.eq.4) icx = 28

call DPARTA(k31, igl(3), irl(3), zz, dep3i, m,
icl, arr3l, ngl, néy3l, jac, ixt3, juh, ipt,
tuz, dtuz, nux3, dtux3, jdum, &3, jvar,
icx)

ix =0

mprod = 1

call UPDNKA(K31, igl(3), irl(3), zz, dep3l, m,
jdq, 1gi, icl, arr3l, ngl, ngl3i, 0, ncy3l,

zsut, iveh(l), nka2, isp2, suts2, mprod,
jac)

1f(ixt3.eq.1) jor2 = 0

if(ixt3.eq.l) jxt3 =1

if (ixt3.eq.1) go to 210
251 if(ixt3.eq.l) then

ixt3 = 0
if(jl.eq.4) then
krx2 = 0
kix3 = 0

endif

tuzb = tuz(5)

if(jl.eg.4.and.tuz5.gt.igl (3) .and.igl (3) +icl
Jde.irr(2))then
tuzs = wuz(5, ibs5)
if(dep3l (m) .gt .wuz (5,
ibs5) .and.dep3l(m) .1t.wuz (5, ibs5+1))
then
ibs5
tuzb
endif
if(tuz5.gt.igl(3)+icl) go to 230
kibe5 = 1
endif

ibs5 + 1
wuz (5, ibs5)

I

if(jl.eg.4.and. (tuz5.gt.igl(3) .or.tuz(6) .gt.
igl(3))) then
jz =5
if(tuz5.1t.tuz(6)) jz = 6
if(jz.eq.5) then
ibsS = ibs5 + 1
kibs5 = 0
endif
dep3l(m) = tuz5 + 2.04
1f(jz.eq.6) dep3l(m) = tuz(6) + 2.04
ircll = irl(3)+icl-ipt
1f(dep3l(m) .ge.ircll) then
call UPDATE(ngl, k31, igl(3), irl(3), zz,
dep3l, m, icl, ncy3l)

ixt3 = 1
krx2 = 1
k1x3 = 1
krt3 = 1
go to 210
endif
endif
endif

230 if(jl.eqg.4) then

if((nac.eg.l.and. (k31.eq.2.or.jdg.eq.11.and.
(k31.eq.4.0r.k31.eq.5))) .or. (nac.eq.2.and.
(k31.eg.2.0r.k31.eq.3.0r.jdq.eq.11.and. (k31.
eg.5.0r.k31l.eq.6.0or.k31.eq.8.0r.k31.e3.9))))
then

174

jo2 = jo2 + 1

carrl3(jo2) = dep3l(m)

if (mge2.eq.iveh(l) .or.jor2+mac2.eq. iveh(1))
then

sss = st(6)

ssd = sss - dep3l(m)

if(sss.ge.irl(3)+icl) then
img3 = 1

elseif(ssd.gt.0) then

jor2 = jor2 + 1
endif
endif

Cmmmmm Print arrival and departure time at
each intersection ————-———
C
255 if(nl.ne.0) then
parrll = arrll(m)
pdepll = depll(m)
= arr2l(m)
= dep2l (m)
= 0.

oo

0.
0.
0.

ki2lp = ii + jol

ki3lp = jol

if{dep31(m).1lt.arr31(m)) dep3l{m) = arr3l(m)

C

if (mult.eq.0) then

call PRN(arxrll, depll, arr2l, dep2l, arr3l,
dep3l, ku2, m, ii, Jjol, nqgl2, ngl3, ngl3i)

endif

if (ki2lp.ne.ki2l(m)) go to 261

do 260 ik = igpl, ncy2l
nkal (ik) = nkal(ik) + 1

260 continue

261 continue

if (ki3ip.ne.ki3l(m)) go to 266

do 265 ik = igp2, ncy3l
nka2(ik) = nka2(ik) + 1

265 continue

266 continue

if(nl.ne.0) then
arrll(m) = parrll
depll(m) = pdepll
arr2l(m) = parr2l
dep2l(m) = pdep2l
endif

if(imgR.eq.1) go to 210
if(img3.eq.1) go to 210
200 continue

210ma(jl) =m
if(jl.eq.4.and.m.ge.176) then
endif

if(igl(2).ge.ismt) jvol = jvol - 1
if(img2.eq.l.0r.img3.eq.1) then
ma(jl) =m+ 1
if(igl(2).ge.iamt) jvol = jvol + 1
endif

return
ed
RERKI KK
subroutine findep (dep, mxl)
dimension dep{0:2000)
100 if(Cep(nxl).eq.0) then
mxl =mxl - 1
if(mxl.le.0) then
mxl = 0
go to 200
endif
go to 100
endif
200returmn
erd
dhdhh Rk
subroutine NOVSIM(dep, mxl, time, novs)
dimension dep(0:2000)
if (mx1.eq.0) then

novs = 0
go to 200
endif

do 100 ij =md, 1, -1
if (time.gt.dep(ij) .and.dep(ij).gt.0.1) then
novs = ij
go to 200
endif
if(dep(ij).gt.time.and.dep(ij-1).le.time.and.
dep(ij-1).gt.0.1) then
novs = ij - 1
if(ij.eq.0) go to 200
ijs = ij
250 if(dep(ijs).1t.0.01) then
ije = ijs - 1
novs = ijs - 1
go to 250
endif
go to 200
endif
100 continue
200returm
end
*kkxIKK
subroutine NOWUP (depl, dep2, dep3, iwp, novs,
mxl)
dimension depl(0:2000), dep2(0:2000),
dep3 (0:2000)
if(mxl.eq.0) then
novs = 0
go to 200
endif
do 100 ij = 1, 600
1f(depl(ij).1t.0.01l.and.dep2(ij) .1t.0.01.and.
dep3(ij).1c.0.01) then
novs = ij - 2
go to 200
endif
1f{dep2(ij) .gt.iwp) then
novs = ij - 1
go to 200
endif
100 contimnue
200retum
ed
o vk kkk ok
subroutine piksrt(n, dep)
dimension dep(10)
dol123=2, n

175

a = dep(3)
11 i=3-1, 1, -1
if(dep(i).le.a) go to 10
dep(i+l) = dep(i)
11 contimue
i=20
10 dep(i+l) = a
12 contirmue
returm
ad
dkdkkk ki
subroutine ARRQLA(arr, dep, depp, m, nce, dist,
speed, at, arrr, j, n, mn, iup, ki, nqg,
indl, igt, gst, ige, igea, iwvehl, icx, nka,
isp, suts, nii, igti, g@sti, niq, dtig, ngst,
rgst, jdq, arrmmp, icw, jac, jdum, jvar)
dimension dep(0:2000), depp(0:2000),
arx (0:2000)
dimension arrr(0:500),
gsti (80)
dimension nka (100}, suts(0:100, 0:60), rgst(80)
wid = 40.
if(jac.eq.2) wid = 60.
arrmp = arrr(n)
if(arr (m-1) .eq.dep(m-1) .and.arr(m-1) .ne.0.) nce
=0
ipo =1
call NOQUE(arr, dep, 0, arrr, ivehl, ki, m, mi,
ng, n, ige, igea, ipo, 0)
ipo =0

ki(0:2000), ast(80),

call FINDEV(m, dep, ivehl, lks, stl)
jsubs = ivehl - 1
call FINDEV(m, dep, jsubs, lks, st2)

rlo = ng/(dist/20)
if(m.eq.l) rlo = 0.0
if(rlo.gt.1.0) rlo = 1.0

if(jvar.eq.l) then
call rspeed(jdum, rlo, speed, icx)
else
if(rlo.gt.0.001) then
speed = 23.365 - 9.0025*rlo
else
speed = 30.9
endif
endif
IF(ng.ge.ivehl+l.and.arr (m-1) .eq.arrr(n-1))
then
igt = igt + 1
gst(igt) = arrr(n-1)
dids = abs{depp (m)-stl)
1f(dids.1t.0.001) then
igt = igt - 1
elseif (depp(m).lt.stl) then
nig =1
ngst = ngst + 1
igt = iqc - 1
rgst (ngst) = arrr(n-1)
dtig = stl - depp(m)
derp(m) = stl
endif

if(arrr(n).eq.0.) go to 110
igea = 1
if(axrr(n).lt.arr(m-1)) igea = 0

call NOQUE(arr, dep, 0, arrr, ivehl, ki, m,
ml, ng, n, ige, igea, ipo, 0)
if (nqg.ge.ivehl+1l) then
ige =1
arrr(n) = stl + 1.0
if(arrr(n).ge.depp(m)) then
call NEXTTI(n, arrr, iup, nmn, ige, nii,
niq)
go to 150
endif
endif
ENDIF

110 if(m.ge.2) nce = ng

at = depp(m) + (dist+wid-20.*nce)/speed
if(20.*nce.gt.dist) at = depp(m) + wid/speed

intv = int (ivehl1*0.3)
nisp = nka(isp)

nispt = nka(isp+l)
IF(nce.ne.0) then

atx = depp(m) + (wid+dist-(nisp-1)*20.)/speed
atxt = depp(m) + (wid+dist-(nispt-
1)*20.) /speed

if(nisp.le.ivehl) then

if(arr{m-1) .ne.0.0) then

if (arr(m-1) .ne.suts(isp, nka(isp)-1).and.
atx.lt.suts(isp, nka(isp)-1).and.nisp.gt.nq)
then

at = atx
elseif (arr(m-1) .eq.suts(isp, nka(isp)-
1) .and. atxt.lt.suts(isp+l, nka(isp+l)-
1) .and. arr (m-1) .ne.suts (isp+1,
nka(isp+l)-1)) then
at = atxt
endif
endif

if (arr(m-1).eg.0.0.and.nisp.gt.ng) then
if (axr (m-2) .ne.suts(isp, nka(isp)-1)) then

if (nisp.eq.ivehl+l.and.depp(m).1lt.suts (isp,
nka(isp)-1l). and.ng.ge.intv) then
if(arr(m-1) .ne.0.0.and.arr(m-1) .ne.suts (isp,
nka (isp)-1)) then
at = depp(m) + wid/speed
elseif (arr(m-1).eg.0.0.and.arr (m-2) .ne.
suts{isp, nka(isp)-1)) then
at = depp(m) + wid/speed
endif
endif
BDIF
if (nig.eqg.l.and.arrr(n).ge.deppm)) go to 130
if(nig.eq.l.and.arrr(n) .ne.0.0) then
call NEXTTI(n, arrr, iup, mon, ige, nii, niq)

go to 150
endif

176

1301F (arrr (n) .1t .depp(m) .and.arrr(n) .ne.0.)
then

if (ng.ge.ivehl) then
igea = 1
if(arrr(n).lt.arr(m-1)) igea = 0
call NOQUE(arr, dep, 0, arrr, ivehl, ki, m,
mi, ng, n, ige, igea, ipo, 0)
if(ng.gt.0.and.arrr(n) .gt.arr(m-1)) ng = ng

endif

rlo = ng/(dist/20)
if(rlo.gt.1.0) rlo = 1.0
if(jvar.eqg.l) then
call rspeed(jdum, rlo, speed, icx)
else
if(xlo.gt.0.001) then
speed = 23.365 - 9.0025*rlo
else
speed = 30.9
endif
endif

if(20.*ng.gt.dist) then
arrr(n) = arrmmp + wid/speed
else
arrr(n) = arrrmmp + (dist+wid-20.*nq) /speed
endif
if(nce.ne.0.and.nisp.gt.nqg) then
att = arrmp + (wid+dist-(nisp-
1)*20.)} /speed
if (nisp.le.ivehl.and.att.lt.suts(isp,
nka(isp)-1).and. arr(m-1) .ne.suts(isp,
nka(isp)~1)) then N
if(att.gt.arr(m-1)) then
arrr{n) = att
endif

endif
if(nisp.eq.ivehl+l.and.arrrmp. lt.suts (isp,
nka(isp)~1l). and.ng.ge.intv.and.arr(m-
1) .ne.suts(isp, nka(isp)-1)) then
arrr(n) = arrrmp + wid/speed

endif
if(arrr(n).lt.arrr(n-1) .and.nmm.eq.0) then

arrr(n) = arrr(n-1) + 1.0
endif
tt = arrrmp + (dist+wid)/30.9
if (nmn.eq.0.and.tt.gt .dep(m-1) .and.dep (m-
1}.¢gt.0.1) then

arrr(n) = tt
endif

ELSE
go to 150
ENDIF

if(nii.eq.l.and.arrr(n).1lt.stl) then
arrr(n) = stl
if (arrr(n).ge.depp(m)) then
call NEXTTI(n, arrr, iup, nmm, ige, nii,
niq)
go to 150
endif
go to 151
endif
c

if(ige.eq.l) then
arrr(n) = arxr(n~1) + 1.0
ige = 0
if(arrr(n).ge.depp@m)) then
call NEXTTI (n, arrr, iup, nrn, ige, nii,
nig)
go to 150
endif
endif

151 if{arrr(n).lt.arr(m-1).and.arrr{n).lt.at)
then
arrr{n) = arrr(n-1) + 1.0
if(arrr(n).lt.arr(m-1).and.arrr(n) .1lt.at)
then
call NEXTTI(n, arrr, iup, nnn, ige, nii,
niq)
endif
endif
Tk
igea = 1
if{arrr(n).lt.arr(m-1)) igea = 0
call NOQUE(arr, dep, 0, arrr, ivehl, ki, m, ml,
ng, n, ige, igea, ipo, 0)
if(ng.gt.0.and.arrr(n).gt.arr(m-1)) ng = ng - 1
if(m.ge.2) nce = nq
at = depp{m) + (dist+wid-20.*nce) /speed
if(20.*nce.gt.dist) at = depp(m) + wid/speed

kk*k

if{at.lt.arr(m-1)+1.0) at = arr{m-1) + 1.0
IF(at.ge.arrr(n).and.arr(m-1) .le.arrr(n)) then

if (nka(isp) .eq.ivehl+l.and.arrr(n).lt.st2-1.1
.and.arr (m-1) .ne.suts(isp, nka(isp)-1)) then
if (ng.eq.ivehl+l) go to 160
if(arrr(n).lt.dep(m-1ks+1)) go to 160
if(suts(isp, nka(isp))-arrr{n).lt.jdg) go
to 170
igti = igti + 1
gsti(igti) = arrr(n)
170 nii =1
160 1f (depp(m) .1t.st2.and.arr (m-1) .ne.
suts(isp, nka(isp)-1)) then
if (suts(isp, nka(isp))-arrr(n).lt.jdq) go
to 190
ngst = ngst + 1
if(igti.gt.0) igti = igei - 1
rgst (ngst) = arrr(n)

190 nig = 1
dcig = suts(isp, nka(isp)) - depp(m)
depp (m) = suts(isp, nka(isp))
endif
endif

if(nka(isp).eq.ivehl+2.and.axrr(n) . lt.st2-1.1
.and.arr (m-1) .ne.st2-1.1) then
arrr(n) = st2-1.1

if(st2-1.1.eq.depp(m)) then
call NEXTTI (n, arrr, iup, mmn, ige, nii,
nig)
go to 150
endif
nii = 1
if(arrr(n).ge.depp(m)) then
call NEXTTI(n, arrr, iup, nmn, ige, nii,
nig)

177

go to 150
endif
endif
nm = nn + 1
J=3+1
nce = nce + 1
at = depp(m) + (dist+wid-20.*nce)/speed
1£(20.*nce.gt.dist) at = depp(m) + wid/speed

([}

if (ng.ge.ivehl+l) then
igea = 1
call NOQUE(arr, dep, 0, arrr, ivehl, ki, m,
ml, ng, n, ige, igea, ipo, 0)
if(ng.ge.ivehl+l) then
ige =1
arrr(n) = stl + 1.0
if(arrr(n) .ge.depp(m)) then

mm = mm - 1
i=3-1
nce =nce - 1
call NEXTTI(n, arrr, iup, nmn, ige, nii, niq)
go to 150
endif

endif
endif
if (mn.eg.1) then

arr(m+l) = at
else

arr(m+l) = arr(m)
endif
arr(m) = arrr(n)
n=n+1

diff = arrr(n) - arrmp
if(Qiff.gt.25.0) iwp = 1
if(arrr(n).eq.0.) iw = 1

EILSE
150 arr{m) = at
nii =0
nce = nce + 1
ENDTF

if (arr(m).le.arr (m-1) .and.arr(m).gt.0.) then
arr{m) = arr{m-1) + 1.0
endif

ml0 =m -1

call findep(arr, ml0)

if (arr(m).lt.arr(ml0)+0.5) then
arr(m) = arr(mi0) + 0.5

endif

C****

ipo = 10

call NOQUE{arr, dep, 0, aryr, ivehl, ki, m, mil,
ng, n, ige, igea, ipo, 0)

ipo =0

return

ax

ek vk ek k

subroutine NOQUE{arr, dep, depp, arrr, ivehl,
ki, m, ml, ng, n, ige, igea, ipo, jot}

dimension arr(0:2000), dep(0:2000),
depp (0:2000)

dimension ki(0:2000), arrr(0:500)

ki(0) =0

if(m.gt.1l) then

m=m-1
time = arr(ml)
if (ipo.eq.19) time = depp(m)
na = ml
if(ige.eqg.l.or.igea.eq.1l) then
if (ipo.eq.0) then
time = arrr(n)
ma=m
endif
endif
110 if(arr(ml).eq.0) then
ml =ml -1
if(ipo.ne.19) time = arr(ml)
na = ml
if(ipo.eq.9.and.ng.ge.ivehl+l) then
ot = 1
go to 100
endif
go to 110
endif
if (ipo.eq.10) then
time = arr(m)
na =m
endif
if (ipo.eqg.29) then
time = dep(m)
n=m-1
endif
if(dep(ml) .le.time.and.dep(ml) .ne.0) then
nd = ml
go to 200
endif
do 300 ij = 0, ml-1
if(dep(ij+1) .gt.time.and.dep(ij) .le. time)
then

nd = ij
if(ij.eq.0) go to 200
ijs = ij

250 if (dep(ijs).eq.0.) then
ijs = ijs - 1
nd = ijs
go to 250
endif
go to 200
endif
300 continue
200 ng =na - ki(na) - (nd - ki(nd))
100 continue

endif

return

Sael

Jeddekkkk

subroutine NEXTTI(n, arrr, iup, nnn, ige, nii,
niq)

dimension arrr(0:500)

iloop = 0

100np = n

20n=n + 1 .

ileop = iloop + 1
if (iloop.gt.30) then
write(10, *)'stopped by endless go to (in

NEXTTI)', 'n, np, arrr(n), arrr(np)', n,
p, arrr(n), arrr(mp)
stop

endif

if(arrr(n) .eq.0.0) go to 300

if(arrr(n).l

t:arn'(np)) go to 200
diff = arrr(n) - arrr(np)

178

if(diff.1t.25.) go to 100

300inp = 1
= 0
ige =0
nii =0
nig = niq
return
end

dkkdkdk

subroutine DEPART(k, ig, ir, z, dep, m, icl,
arr, nce, ncy, jac, ixt, jwh, ipt, jcum,
Goly, jvar)

dimension z(0:100), dep(0:2000), arr(0:2000)

dimension zsut(0:100), dphy(0:60)

JpdB3 = (jwh-15)* (jwh-25)

if(jpd3.ne.0) jpd3 =1

k=k+1

call DPHDWY (z, zsut)

if(jvar.eg.l.and.k.eq.l.or.k.eq.2) then

call nordev(jdum, Johy, icx)

endif

ircl = ir + icl*(2~jac) - ipt*(1-jpd3)
if(arr(m).le.ircl) then
if(jvar.eq.0) then
dep(m) = z(k) + ig
else
dep(m) = dphy (k) + ig
endif
if(dep(m).gt.ircl)then
call UPDATE(nce, k, ig, ir, z, dep, m, icl,
ncy)
it = 1
endif
if (arr(m).ge.dep(m)) dep(m) = arr(m)
elseif(arr(m).gt.ircl) then
call UPDATE(nce, k, ig, ir, z, dep, m, icl,
ncy)
ikt = 1
if(arr(m) .ge.dep(m)) dep(m) = arr(m)
endif

mi0 =m -1

call findep(dep, ml0)

if(dep(m) .1t.dep (ml0)+0.7) then
dep(m) = dep(ml0) + 0.7

endif

ircl = ir + icl*(2-jac) - ipt*(1-jpd3)

if (k.gt.2.and.arr (m-1) .eq.dep(m-1) .and.arr (m-
1).gt.l.and.
arr(m) .gt.ig.and.arr(m) .le.ircl) then
dep(m) = arr(m)

endif

if{dep(m).gt.ircl) then
call UPDATE(nce, k, ig, ir, z, dep, m, icl,
ney)
ixt = 1

endif

return

ad

Je %k kkk IR

subroutine DPARTA(k, ig, ir, z, dep, m, icl,
arr, nce, ncy, jac, ixt, jwh, ipt, tuz,
dtuz, nux, dtux, jdum, dphy, jvar, icx)

dimension z(0:100), dep(0:2000), arr(0:2000)

dimension zsut (0:100),
dphy (0:60)
jpd3 = (jwh-15)*(jwh-25)
if(jpd3.ne.0) jpd3 = 1
k=k+1
call DPHDWY (z, zsut)
if (jvar.eg.l.and.k.eq.l.or.k.eq.2) then
call nordev(jdum, dphy, icx)
endif
ircl = ir + icl*(2-jac) - ipt*(1-jpd3)
if(arr(m).le.ircl) then
if(jvar.eq.0) then

tuz{15), dtuz(l5),

dep(m) = z(k) + ig
else

dep(m) = dphy (k) + ig
endif
jz2 = 6

if(tuz(5).gt.tuz(6)) jz2 =

if (nux.eq.1l) dep(m) = dep(m) + dtux
if (tuz(jz2) .gt.ig.and.jwh.eq.25) then
dep(m) = dep(m) + dtuz(jz2)

endif

if (dep(m) .gt.ircl)then
call UPDATE(nce, k, ig, ir, z, dep, m, icl,

ney)
mx = 0
ixt =1
endif

if (arx (m) .ge.dep(m)) dep(m) = arr(m)

elseif{arr(m).gt.ircl) then
call UPDATE(nce, k, ig, ir,
ney)
IILIX

z, dep, m, icl,

0o

0
1
((
end:.f

.ge.dep(m)) dep(m) = arr(m)

Mo =m-1
call findep(dep, m10)
if(dep(m) 1t.dep(m10)+0.7) then

dep(m) = dep(mlO) + 0.7
endif
ircl = ir + icl*(2-jac) - ipt*(1-jpd3)
if(k.gt.2.and.arr(m-1) .eq.dep(m-1) .and. axx (m-
1).gt.1l.and.

‘:'2

arr(m) .gt.ig.and.arr (m) .le.ircl) then
dep(m) = arr(m)
endif

if(dep(m) .gt.ircl) then
call UPDATE(nce, k, ig, ir, z, dep, m, icl,
ncy)
nux
ixt

endif

retum

ed

Fhxhkxk

subroutine UPLNKA(k, ig, ir, z, dep, m, jdq,
lgi, icl, arr, nce, ng, ngd, ncy, zsut,
ivehl, nka, isp, suts, mprod, jac)

dimension z(0:100), dep(0:2000), arr(0:2000)

dimension zsut(0:100)

dimension nka(100), suts(0:100, 0:60)

irel = ir+icl*(2~-jac)

if (ngd.ge.ivehl+l) go to 100

0
1

179

i
i

(mprod.eq.0) go to 100
(ng.eqg.0.and.arr(m) .gt.ig.and.arr (m) . le.ircl)
then
dep(m) = axrr(m)
endif
100intv = int (ivehl*0.3)

£
£

if(suts{isp, nka(isp)).lt.arr(m)) then
suts(isp, nka(isp)) = arr(m)

endif

if(suts(isp, nka(isp)).gt.dep(m)) then
suts (isp, nka(isp)) = dep(m)

endif

if(jac.eq.2) then

endif

if (nka(isp).ge.intv.and.arr(m) .gt.suts(isp,
rka{igp)~1))then
suts(isp, nka(isp)) = arr{m)

endif

if (m.gt.1l.and.isp.le.2) then
if(dep(m-1) .ne.0.and.axr (m-1) .ne.0.and.dep (m-
1).eq. arr(m-1l).and.dep(m).ne.arr(m)) then

nka(isp) = 0
igp = isp + 1
endif
endif

((3dg.eq.7.and.1gi.ge.30) .or. (34g.eq.9.and.1lg
i.ge.50).or. (jdg.eqg.1ll.and.1lgi.ge.70)) then
isp = noy
else
if (nka(isp) .ge.ivehl+6) then
nka(isp) = 0
isp=1isp + 1
endif
endif
if(m.le.6.and.ncy.gt.isp) isp = ncy

ml0 =m-~ 1

call findep(dep, ml0)

1f(Gep(m).1t.dep@mi0)+0.7) then
dep m) = dep(ml0) + 0.7

endif

if(dep(m).gt.ircl) then
call UPDATE(nce, k, ig, ir, z, dep, m, icl,
ncy)

endif

returm

end

dekdk kA hd

subroutine UPNKA(k, ig, ir, z, dep, m, jdg,
1gi, icl, arr, nce, ng, ngd, ncy, 2sut,
ivehl, nka, isp, suts, mprod, jac, tuz,
dtuz, nibi, nibj)

dimension z(0:100), dep(0:2000), arr{0:2000)

dimension zsut(0:100), tuz(15), dtuz(15)

dimension nka(100), suts(0:100, 0:60)

ircl = ir+icl*(2-jac)

if (ngd.ge.ivehl+l) go to 100

if (mprod.eq.0) go to 100

if (ng.eq.0.and.arr (m) .gt.ig.and.axr (m) . le.ircl)
then
dep (m)

endif

100intv = int (ivehl1*0.3)

= arr(m)

if(suts(isp, nka(isp)).lt.arr(m)) then

suts{isp, rka(isp)) = arr(m)

endif

if(suts(isp, nka(isp)).gt.dep(m)) then
suts(isp, nka(isp)) = dep(m)

endif

if (nka(isp).ge.intv.and.arr(m) .gt.suts (isp,
nka(isp)~1))then
suts(isp, nka(isp)) = arr(m)

endif

if(m.gt.l.and.isp.le.2) then
if(dep(m-1) .ne.0.and.arr (m-1) .ne.0.and.dep (m-
1).eq. arr(m-1).and.dep(m).ne.arr{m)) then
nka({isp) = 0
isp=dsp + 1
endif
endif

if(tuz(8).gt.ig) dtuz(8) = tuz(8) - ig
if(tuz(8) .gt.ig.and.lgi.ge.40.and.dtuz(8) .gt.lg
i-20.and. nibi.ne.l) then
nibi = 1
endif

if(nibi.ne.l.and.nibj.ne.1l) then
if((jdg.eq.7.and.1lgi.ge.30) .or. (jdg.eq.9.and.
lgi.ge.50) .or. (jdg.eq.1l.and.1lgi.ge.70))
then
isp = noy
else
if(nka(isp) .ge.ivehl+6) then
nka(isp) = 0
isp = isp + 1
endif
endif
elseif(nibi.eq.l.o0r.nibj.eq.1) then
if (nka(isp) .ge.ivehl+3) then

nka(isp) = 0
isp = isp + 1
endif
endif

if(m.le.6.and.ncy.gt.isp) isp = noy

if(dep(m).gt.ircl) then
call UPDATE(nce, k, ig, ir, z, dep, m, icl,
ncy)

endif

return

ad

dek ok okk ok k

subroutine DPHDWY (z, zsut)

dimension z{(0:100), zsut(0:100)

z(0) = 0.

z(1) = 2.04

z(2) = 4.50

z(3) = 6.62

do 100 n = 4, 100

z{n) = 1.34 + 1.82 *n
100 continue

zsut{0) = 0.

zsut(l) = 2.04

zsut (2) = 2.75

zZsut (3) = 3.46

do 200 n = 4, 100
zsut(n) = 1.1 *n

200 continue

return

ed

KhkxkkK

180

subroutine ARRNT (arr, dep, depp, m, nce, dist,
speed, nq, jac, Jjdum, jvar)

dimension dep(0:2000), depp(0:2000),
arr(0:2000)

wid = 40.

if(jac.eq.2) wid = 60.

if(arr(m-1) .eq.dep(m-1) .and.arr (m-1) .ne.0.) nce

=0
if(m.ge.2) then

nce = ng
endif

rlo = ng/(dist/20)
if(rlo.gt.1.0) rlo = 1.0
if(jvar.eq.l) then
call rspeed(jdum, rlo, speed, icx)
else
if(rlo.gt.0.001) then
speed = 23.365 - 9.0025*rlo
else
speed = 30.9
endif
endif

arr(m} = depp(m) + (dist+wid-20.* nce)/speed

if(20.*nce.gt.dist) arr(m) = depp(m) +
wid/speed

nce = nce + 1

if(arr(m).le.arr(m-1) .and.arr(m).gt.0.) then
arr(m) = arr(m-1) + 1.0

endif

ml0=m-1

call findep(arr, ml0)

if(arr(m).lt.arr(mi0)+0.5) then
arr(m) = arr(ml0) + 0.5

endif

retum

end

*kdhK KK

subroutine DEPQLS(k, ig, ir, z, dep, m, icl,
arr, nce, arrd, depd, iq, gs, ki, ng, ncy,
ivehl, zsut, nka, isp, mua, dtua, suts, igs,
gsi, ngs, ras, niq, dtiq, jdg, nux, dtux,
icx, jwh, jac, ixt, tuz, dwuz, wuz, ib, ijk,
jzl, jz2, jz3, st, ipt, jdm, dohy, jvar)

dimension dep{0:2000), arr(0:2000),
depd(0:2000), arrd(0:2000)

dimension ki(0:2000), suts(0:100, 0:60),
nka (100)

dimension z(0:100), zsut(0:100), dphy(0:60)

dimension gs{80), gsi(80), rgs(80)

dimension tuz(15), dtuz{15), wuz (15, 80),
ib(15), st(15)

Jpdl = (jwh-10)*(jwh~13) * (jwh-21) * (Fwh-
24)*(jwh-30) *(jwh-32) * {(jwh-40) * (jwh-
42)* (jwh-50) * (jwh-52)

Jpd2 = (Jwh-11)* (jwh-23) * (Fwh-32) * (jwh-
40)* (jwh-42) * (jwh-50)

Jpd3 = (Fwh-11)* (Jwh-21)* (Fwh~13) * (jwh-23)

if({jpd3.ne.0) jpdB =1

if(m.eqg.l) then

ma = 0
ki(0) =0
endif

k=k+1

call DPHIWY(z, zsut)
if(jvar.eq.l.and.k.eq.l.0r.k.eq.2) then

call nordev(jdum, dphy, icx)

endif
gt =0
ipo = 9

call NOQUE(arrd, depd, 0, 0, ivehl, ki, m, ml,
nq, 0, 0, 0, ipo, jgt)

call FINDEV (m, depd, ivehl, 1lks, stll)

call FINDEX(m, depd, ivehl, lks, st, jzl)

call FINDEX(m, depd, ivehl+l, lks, stl, jzl)

Jjib =0
if(jgt.eq.l) go to 290
ircl = ir + icl*(2-jac) - ipt*(1-jpd3)
irclp = ir + icl*(2-jac)

if(m.gt.ivehl+l.and.ng. le. ivehl.and.arrd (m-
1).ne.0..and. stll.gt.arrd(m-1)+4.)then
dep{m) = stll
if(stll.gt.ircl) then

if(jib.eq.0.and.jpdl.eq.0) then
jib =1
tuz{jzl) = stll
dtuz (jzl) = tuz(jzl) - irclp
wuz(jzl, ib(jzl)) = tuz(jzl)
ib(jzl) = ib(jzl) + 1

endif
igel = ig + icl
1f(dep(m) .gt.igel) then

call UPDATE(nce, k, ig, ir, z, dep, m, icl,
)

call UPDATI (mux, nig, nua)

dtux = st1l - ig - 2.05
nux = 1
ixt =1
dep(m) = stll
go to 500
endif
call UPDATE(nce, k, ig, ir, z, dep, M, icl,
ncy)
call UPDATL (nux, niqg, nua)
ixt =1
go to 500
endif
ma =1
dtua = stll - arrd(m-1)
go to 490
endif

IF(arr(m).le.ircl) then
if (ng.ge.ivehl+l) then
if(jvar.eq.0) then

depm = z(k) + ig

else

depm = dphy (k) + ig
endif
dep(m) = stll
ig=ig+ 1

gs(iq) = arrd(ml)
if(stll.gt.ircl) then
if(jib.eqg.0.and.jpdl.eq.0) then

jib =1

tuz(jzl) = stll

dtuz (jzl) = tuz(jzl) - irclp

wuz (jzl, ib(jzl)) = tuz(jzl)
ib(jzl) = ib(jzl) + 1

endif

ngs = ngs + 1

rgs(ngs) = arrd(mi)

ig=ig-1
igel = ig + icl
if (dep{m) .gt.igcl) then
call UPDATE(nce, k, ig, ir, z, dep, m, icl,
y)
call UPDAT]{(mux, nig, nua)
dtux = stll - ig - 2.05
if(dtux.gt.icl) then
260 call UPDATE(nce, k, ig, ir, z, dep, m,
icl, ncy)
dtux = dtux - icl
if (dtux.gt.icl) go to 260
endif
mx = 1
ixt =1
dep(m) = stll
go to 500
endif
call UPDATE(nce, k, ig, ir, z, dep, M,
icl, ncy)
call UPDATL (mux, niqg, nua)
ixt = 1
go to 389
endif
mix = 1
dtux = dep(m) - depm
go to 500
endif
290 if(jvar.eq.0) then
dep(m) = z(k) + ig
else
dep(m) = dphy (k) + ig
endif

if(nig.eq.1) dep(m) dep(m) + dtig

if (nux.eq.1) dep(m) = dep(m) + dtux
if(tuz(jz2) .gt.ig.and.jpd2.eq.0) then
if(ijk.eqg.l.and.ncy.eqg.1l) go to 389

nn

if (nux.eq.l.and.tuz(§z2) .1t.stl1l) go
to 389

dep(m) = dep(m) + dtuz(jz2)
endif

389 continue
ELSETF {arr(m) .gt.ircl) then
if (ng.ge.ivehl+l) then
ig=ig+ 1
gs(iq) = arrd(ml)
if(stll.gt.ircl) then
if(jib.eqg.0.and.jpdl.eq.0) then

Jib = 1
tuz (jzl) = stll
dtuz(jzl1) tuz(jzl) - irclp

wuz(jz1, ib(jzl)) = tuz(jzl)
ib(jzl) = ib(jzl) + 1

endif

ngs =ngs + 1
rgs(ngs) = arrd(ml)
ig=ig-1

igel = ig + icl
if(stll.gt.igel) then
call UFPDATE(nce, k, ig, ir, z, dep, m, icl,
ey}
call UPDATI (nux, nig, nua)
dtux = stll - ig - 2.05
if (dtux.gt.icl) then
call UPDATE(nce, k, ig, ir, z, dep, m, icl,
ncy)
dtux = dtux - icl

181

endif
nw = 1
it =1
dep(m) = stll
go to 500
endif
endif
endif A
call UPDATE (nce, k, ig, ir, z, dep, m, icl,
ny)
call UPDATL (nux, niq, nua)
it =1
ENDTF
if(nua.eq.l) depim) = dep(m) + dtua
ircl = ir + icl*(2-jac) - ipt*(1-jpd3)
irclp = ir + icl*(2-jac)
IF (nka(isp) .eq.ivehl+2.and.nqg.le.ivehl) then
if (m.ge.ivehl+l.and.arrd(ml) .ne.suts(isp,
nka(isp)-1)) then
if(arrd(ml) .1lt.suts(isp, nka(isp)-2)) then
if (arrd(m-1) .eg.0.and.dep (m-1) .ne.0) go to
410
if(suts(isp, nka(isp)-1) - arrd{ml).lt.jdy)
go to 410
igs = igs + 1
qsi(igs) = arrd(ml)
endif
410 continue
if(depm).lt.suts(isp, nka(isp)-1)) then
ma = 1
if(suts(isp, nka(isp)-1).gt.ircl) then
if(jib.eq.0.and.jpdl.eq.0) then
jib=1
tuz(jzl) = stll
dtuz(jzl) = tuz(jzl) - irclp
wuz (jz1, ib(3izl)) = tuz(jzl)
ib(jzl) = ib(jzl) + 1
endif
if(suts(isp, nka(isp)-1) -
arrd(ml) .1lt.jdqg) go to 420
ngs = ngs + 1
rgs(ngs) = arrd(ml)
if(igs.gt.0) igs = igs - 1
igel = ig + icl
if(stll.gt.igel) then
call UPDATE(nce, k, ig, ir, z, dep, m, icl,
ncy) N
call UPDATI (nux, niqg, nua)
drux = stll - ig - 2.05

nux = 1
ixt = 1
dep(m) = stll
go to 500
endif
420 continue
endif

drua = suts({isp, nka(isp)-1) - dep(m)
dep(m) = suts(isp, nka(isp)-1)
endif
endif
ENDIF

irel = ir + icl*(2-jac) - ipt*(1-jpd3)

if(k.gt.2.and.arr (m-1) .eg.dep(n-1) .and.axr (m-
1).gt.l.and.
arr(m).gt.ig.and.arr(m).le.ircl) then
dep(m) = arr(m)

endif

182

490 if(arr(m).ge.dep(m)) dep(m) = arr(m)
mll=m-1
call findep(dep, ml0)
if (dep(m).1lt.dep(ml0)+0.7) then
dep(m) = dep(ml0) + 0.7
endif

if(dep(m).gt.ircl) then
call UPDATE(nce, k, ig, ir, z, dep, m, icl,
ncy)
call UPDATI (mux, nig, nua)
ixt =1
endif

igel
ircl

ig + icl
ir + icl*(2-jac) - ipt*(1-jpd3)

Hon

if(jgt.eq.l.and.stll.gt.dep(m)) then
if(stll.gt.ircl) then
if(jib.eqg.0.and.jpdl.eq.0) then
jib =1
tuz(jzl) = stll
dtuz(jzl) = tuz(jzl) - ircl
endif
if (dep(m) .gt.igcl) then
call UPDATE(nce, k, ig, ir, z, dep, m,
icl, ncy)
call UPDATL (mux, nig, nua)
dtux = stll - ig - 2.05
nx = 1
ixt = 1
dep(m) = stll
go to 500
endif
call UPDATE(nce, k, ig, ir, z, dep, M, icl,
ney)
call UPDATI (nux, nig, nua)

ixt = 1
if(dep(m).1lt.stll) dep(m) = stll
go to 500
endif
dep(m) = stll
endif

if(jgt.eq.l.and.ng.ge.ivehl+l.and.st (jz1) .gt.ig
cl) then
if(jib.eq.0.and.jpdl.eq.0) then
tuz(jzl) = st(jzl)
dtuz(jzl) = tuz(jzl) - ircl
endif
endif

500 continue
returmn
end
hkxhkhhk N
subroutine FINDEV(m, depd, ivehl, lks, stl)
dimension depd(0:2000)
1kl =0
if(m.gt.ivehl) then
do 100 1k =1, 99
if (depd (m-1k) .eq.0.0r.depd (m-1k) .ne.0.and.
depd (m-1k) .eg.depd (m-1k-1)) then
1kl = 1kl + 1
endif
1f(1k-1k1.eq.ivehl+l) then
1lks = 1k
go to 110

elseif (m-1k.eq.l) then

stl = 0.
go to 120
endif

100 continue
110stl = depd(m-lks) - 2.04 + (ivehl+l)*1.1
endif
120return
axd
*hkkkkkk
subroutine FINDEX (m, depd, iwvehl, 1lks, st, jl)
dimension depd(0:2000), st(15)
1kl =0
if(m.ge.ivehl) then
do 100 1k =1, 99
if (depd(m-1k) .eq.0.or.depd (m-1k) .ne.0.and.
depd (m-1k) .eq.depd (m-1k-1)) then
1kl = 1k1 + 1
endif
1f(1k-1kl.eq.ivehl) then
lks = 1k
go to 110
elseif (m-1lk.eq.l) then
st(jl) = 0.
go to 120
endif
100 continue
110st (51) = depd(m-lks) - 2.04 + (ivehl)*1.1
endif
120return
ad
*kkkkkKk
subroutine ARRNTE(arr, dep, depp, m, nce, dist,
speed, ng, ivehl, nka, isp, suts, ki, jac,
jdum, jvar)
dimension dep(0:2000), depp(0:2000),
arr(0:2000)
dimension ki(0:2000), nka(100), suts(0:100,
0:60)
wid = 40.
if(jac.eq.2) wid = 60.
if(nce.eq.0) then
ipo = 19
call NOQUE(arr, dep, depp, 0, ivehl, ki, m,
0, nq, 0, 0, 0, ipo, Q)

endif

if (arr(m-1) .eqg.dep (m-1) .and.arr(m-1) .ne.0.) nce
=0

if{m.ge.2) then
nce = ng

endif

rlo = ng/(dist/20)
if(rlo.gt.1.0) rio = 1.0
if(jvar.eqg.l) then
call rspeed(jdum, rlo, speed, icx)
else
if(rlo.gt.0.001) then
speed = 23.365 - 9.0025*rlo
else
speed = 30.9
endif
endif
arr(m) = depp(m) + (dist+wid-20.*nce)/speed

if(20.*nce.gt.dist) arr(m) = depp(m) +
wid/speed

183

intv = int(iveh1*0.3)

nisp = nka(isp)

if(nce.ne.0) then
atx = deppi{m) + (wid+dist-(nisp-1)*20.)/speed
if (nisp.le.ivehl.and.atx.lt.suts{isp,
nka(isp)~1).and. arr{m-1l).ne.suts(isp,
nka(isp)-1)) then

arr{m) = atx

endif

endif

if (nisp.eq.ivehl+l.and.depp (m) .1t.suts(isp,
nka(isp)-1). and.ng.ge.intv.and.arr (m-
1) .ne.suts(isp, nka(isp)-1)) then
arr(m) = depp(m) + wid/speed

endif

nce =nce + 1

if(arr(m).le.arr (1) .and.arr(m) .gt.0.) then
arr(m) = arr(m-1) + 1.0

endif

mll =m-~- 1

call findep(arr, ml0)

if(arr{m).lt.arr(ml0)+0.5) then
arr({m) = arr(ml0) + 0.5

endif

return

ad

drdkdhkhkk

subroutine CROSST(kc, ku3, ku4, tde, carrr,
darrr, arrra, arrrb, nvol, lgic, noff, icl,
jdq, ip, jp, speed, ntg, mult, jvol, tuz,
dtuz, wuz, ib, mgl, mgll, klt, kxt, jwhil,
jwh2, jwh3, jwh4, isps, nkas, suts, ispsl,
nkasl, sutsl, dist, iveh, ismt, irs, igs,
irsl, igsl, igf, kfa, ma, st, ipt, nca, ji,
igis2, gs2, igss, gsi, ngss, rgs2, iats,
gst, iqtis, qsti, ngsts, rgst, ki2, ki3, j2,
igis2l, gs21, igssl, gsil, ngssl, rgs2l,
igtsl, gstl, igtisl, gstil, ngstsl, rgstl,
kiz2l, ki3l, carrl, cdepl, carxr2, cdep2,
carr3, cdep3, darrl, ddepl, darr2, ddep2,
darr3, ddep3, isp, nka, sutc, nga, ispl,
nkal, sutcl, ngal, jdum, &vl, &2, &3, dv4,
dy5, dvé, jvar, ig, igbl)

dimension carrl(0:2000), cdepl(0:2000),
carr2(0:2000)

dimension c¢dep2(0:2000), carr3(0:2000),
cdep3 (0:2000)

dimension darr] (0:2000), ddepl(0:2000),
Jarr2(0:2000)

dimension ddep2(0:2000), darr3(0:2000),
Addep3 (0:2000)

dimension carrr(0:500), darrr(0:500)

dimension arrra(0:500), arrrb(0:500)

dimension ki2(0:2000), ki3 (0:2000),
ki21(0:2000), ki31(0:2000)

dimension dist(20), iveh(20), noff(20)

dimension irs(20), igs(20), irsl(20), igsl(20),
igf (20)

dimension ig(20), ighl(20)

dimension gs2(80), gst(80), asti(80), rgst(80)

dimension gs21(80), qstl(80), gstil(80),
rgstl1(80)

dimension zz(0:100), zsut(0:100)

dimension suts{0:100, 0:60), sutsl(0:100, 0:60)

dimension nkas(100), nkasl(100), gsi(80),
Qsil(80)

dimension jgn2(100), jgn3(100), rgs2(80),
rgs21 (80)

dimension nka(100), nkal(100), sutc(0:100,
0:60)

dimension tuz(15), dtuz(15), wuz(15, 80),
ib(15)

dimension kfa(10), ma(10), st{15), sutcl(0:100,
0:60)

dimension dy1(0:60), dy2(0:60), dy3(0:60)

dimension &4 (0:60), dy5(0:60), dy6(0:60)

read(50)ixts, ncs, nes, ngs, ksl, ks2, ks3, is,
ms, jos, nls, iups, igis3, ncysl, ncys2,
ncys3, mg2, my3, indsl, iges, igeas, niis,
nigs, muas, nuxs, ixtsl, ncsl, nesl, ngsl,
ksll, ks21, ks3l, isl, mnsl, josl, nrs,
iupsl, igis31, ncysll, ncys21, ncys3l, mg2l,
my3l, indsll, igesl, igeasl, niisl, nigsi

read(50)nuasl, nuxsl, ijk, ijkl, kfi, nui,
nuil, imgs, imgsl, joc, jocl, muzi, nuzil

read(50)dtigs, dtuas, druxs, cparrl, cpdepl,
cpary2, cpdep2, dtigsl, dtuasl, dtuxsl,
dtui, druil, druzi, dtuzil, dparrl, dodepl,
dparr2, dodep2

rewind(50)

Jjac = 2

if(kfa(jl).eq.0) then

mi =0

ixts = 0

joc = 0

imgs = 0

Iric = icl - lgic

if(mlt.eq.0) then
write(ku3, 121) kc

121 format(/' ****** CROSS STREET # ', i1, '
******I/)
write(ku3, 122)

122 format (' *** Left lane of the cross
Street ***'/)
call HEAD(ku3, icl, lgic, 0, lric, noff(2),

noff(3))
endif
*kk kK khkkkkkddhkhrhhdx * % *k kK Kk kK *hk kK
dk Kk K

Left lane of the cross street ****xxx*x
KAXLXXKXXKRKR A KT KA KK Kok

call CTIME(kc, igs, irs, noff, lgic, icl, ip,
ip)

call INIT(carrl, cdepl, carr2, cdep2, carr3,
cdep3, ncs, nes, ngs, ksl, ks2, ks3, is,
ms, m)

call INIT1(jos, nls, iups, igis2, igis3, ncysl,
neys2, ncys3, mgl, mg2, mg3, indsl, iqts,
iges, igeas, iqtis, ngsts)

call INIT2(niis, isps, igss, ngss, nigs, dtigs,
nuas, dtuas, nuxs, dtuxs)

call SIGADJ(irs, igs, lric, lgic, icl, dist,
speed, jac, ke, carrr, jdm, jvar)

endif

Kk kK kR Kk kKk * *

if(kfa(jl) .eq.0.or.kfa(i2) .eq.0.and.kfi.ne.1)
then

do 120 ij = 1,
nkas(ij) = 1
nkasl(ij) = 1

120 continue

ijk = ©

ijkl =0

if(igf(ke) .gt.igs(2)) then

ijk = 1
ijki =1
endif

100

184

Jogn2(1) = igs(2)
Jon3(1) = igs(3)
do 135 ka = 2, 100
jor2 (ka) = jgn2(ka-1) + icl
jon3 (ka) = jgn3(ka-1) + icl
135 continue
call DPHDWY (zz, zsut)
do 145 im = 1, 100
do 142 jm = 0, 60, 1
suts(im, jm) = jgr3(im) + zsut (jm)
sutsl(im, jm) = jgn3(im) + zsut (3m)
142 continue
145 continue
if(kfa(jl) .eq.0) kfa(j1) = 1
kfi =1
endif

o

if (klt.ne.l.and.krt.eq.1) go to 1000
Commmmm Arrival time at intersection 1 ~——~——

C
do 100 m = ma(jl), ma(jl)+ntg
if(igs(2).ge.ismt) jvol = jvol + 1

if (ixts.eq.1l) go to 150
ki2(m) = is
ki3 (m) = jos

non

IF(nls.eq.0) then
carrl(m) = 7.2 * (m~is)

Crmmmmm Departure time at intersection 1 ~————-

call DEPTQ(ksl, igs(l), irs(l), zz, cdepl, m,
icl, carrl, ncs, carr2, cdep2, ki2, ma2,
iveh(1l), ncysl, mui, dtui, jac, ke, jdum,
dyl, jvar)

if(imgs.eq.1) then

imgs = 0

call UPDATE(nes, ks2, igs(2), irs(2), zz,

cdep2, m, icl, ncys2)

nigs = 0
ks2 = ks2 - 1
joc =0
endif
C
C—mm—= Arrival time at intersection 2 ———————-
C
call ARRNT(carr2, cdep2, cdepl, m, ncs,
dist (1), speed, my2, jac, Idum, jvar)
C
Cm—m== Departure time at intersection 2 -—-——-
c
jwh = jwhi
jz2 = 12
if(kc.eq.2) jz2 = 2
if(kc.eqg.3) jz2 =3
if(kc.eq.l) icx = 82

call DEPQLS(ks2, igs(2), irs(2), zz, cdep2, m,
icl, carr2, nes, carr3, cdep3, igis2, gs2,
ki3, mgl, ncys2, iveh(l), zsut, nkas, isps,
nuas, dtuas, suts, igss, gsi, ngss, ras2,
nigs, dtigs, jdg, nuxs, douxs, icx, jwh,
jac, ixts, tuz, dtuz, wuz, ib, ijk, j1, j=z2,
15, st, ipt, jdum, &2, jvar)

iex =0

if(ixts.eq.l) joc = 0

if(ixts.eg.l.and.ijk.eq.1) then

l]k— 0

if(ixts.eq.l) go to 110

150 if(ixts.eq.l) then
Jz2 = 12
if (kc.eqg.2) jz2 = 2
if(kc.eq.3) jz2 = 3

ixts = 0
if(kc.eq.2) then

if (tuz(jz2) .1t.cdep2 (m) .and. tuz (722} .gt .cdep2 (m

y-icl. and.ig{2).1lt.igs(2)) then
tuz(jz2) = tuz(jz2) + icl
elseif (tuz(3z2).1t.cdep2 (m) -
icl.and.tuz(jz2).gt. cdep2 -
2*icl.and.ig(2) .1t.igs(2 1cl)
tuz (jz2) = tuz(jz2) + 2*1cl
endif
endif
if(tuz(jz2) .gt.igs(2)) then
dtuz(jz2) = tuz(jz2) - igs(2)
cdep2 (m) = cdep2 (m) + dtuz(jz2)
if (cdep2 (m) .ge.irs(2)) then
call UPDATE(nes, ks2, igs(2), irs(2), zz,
cdep2, m, icl, ncys2)
call UPDATE(ngs, ks3, igs(3), irs(3), zz,

cdep3, m, icl, ncys3)
nkas (isps) =
isps = isps + 1
ixts = 1
go to 110
endif
endif

endif

if(ijk.eqg.0.and. ((nca.eq.l.and. (ks2.e3.2.0r.
jdg.eq.1l.and. (ks2.eq.4.0r.ks2.eq.5))) .or

(nca.eq.2.and. (ks2.eq.2.or.ks2.eq.3.or.jdg.e

g.ll.and. .

(ks2. eq 4.or.ks2.eq.5.or.ks2.eq.6.0r.ks2.eq.
N
jz2 = 12
if (kc.eq.2) jz2 = 2
if(kc.eq.3) jz2 =3
if (nga.ge.iveh(l) .and.st (jz2)-1.1.gt.irs(2))
then

call UPDATE(nes, ks2, igs(2), irs(2), zz,

cdep2, m, icl, ncys2)
go to 152
endif

jos = jos +1
arrra(jos) = cdep2(m)

if (ke.ne.l.and. (nga.eg.iveh(l) .or.joc+nqa.eqg
.iveh(1) .or.
joc+nka(isp) .eq.iveh(1)+1) .and.st{jz2) -
1.1.gt.cdep2(m)) then

nigs = 1

ssc = st(jz2)

if(ssc.gt.irs(2)) then

imgs = 1
nigs = 0
endif

if(ssc.gt.cdep2(m)) dtigs = ssc - cdep2 (m)

185

endif
joc = joc + 1

go to 155
endif
ELSEIF{iups.eqg.l) then
carrl{m) = cparxl
cdepl (m) = cpdepl
carr2(m) = cparr?
cdep2(m) = cpdep?2
nls = 0
iups = 0
iges = 0
igeas = 0
ELSE
carrl(m) = cparrl
cdepl (m) = cpdepl
carr2(m) = cparr2
cdepZ (m) = cpdep2
ENDIF
icx = 1300

if(kc.eq.l) icw = 10

152call ARRQLA(carr3 cdep3, cdep2, m, nes,
dist(2), speed, at3, carrr, is, mns, nls,
iups, k13 m3, indsl, igts, gst, iges,
igeas, iwveh(l), icx, nkas, igps, suts, niis,
igtis, gsti, nigs, dtigs, ngsts, rgst, jdg,
armp, icw, jac, jdum, jvar)

ix =0

icw = 0

C

Crmmmmm Departure time at intersection 3 —————-
C

Jwh = jwh2

call DEPART(ks3, igs(3), irs(3), zz, cdep3, m,
icl, carr3, ngs, ncys3, jac, 0, jwh, ipt,
jum, dy3, jvar)

mrod = 1

call UPDNKA(ks3, igs(3), irs(3), zz, cdep3, m,
jaq, lgic, icl, carr3, ngs, mg3, 0, ncys3,
zsut, iveh(l), nkas, isps, suts, mprod,
jac)

155 continue

if(nls.ne.0) then

cparrl = carrl(m)
cpdepl = cdepl ()
cparr2 = carx2(m)
cpdep2 = cdep?2 (m)
carrl(m) = 0.
cdepl{m) = 0.
carr2i{m) = 0.
cdep2 (m) = O.

endif

ki3p = jos

if (mmlt.eq.0) then

call FRINT(carrl, cdepl, carr2, cdep2, carr3,
cdep3, ku3, m, is, jos, mg3)

endif

i
i

f(ki3p.ne.ki3 (m)) go to 162

fincys3.1lt.isps) then

do 160 ik = isps, isps
nkas (ik) = nkas(ik) + 1

160 continue
else
do 161 ik = isps, ncys3
nkas (ik) = nkas(ik) + 1
161 continue

endif

162 if (nls.ne.0) then
carrl(m) = cparrl
cdepl(m) = cpdepl
carr2(m) = cparr2
cdep2 (m) = cpdep2

endif

if (imgs.eqg.1l) go to 110

100 continue
110ma(jl) = m
if(igs(2) .ge.ismt) jvol = jvol - 1
if(imgs.eq.1l) then

ma(jl) =m+ 1

if(igs(2).ge.ismt) jvol = jvol + 1
endif

if(krt.ne.l) go to 1100

L b L o L L Ly L T T T L P L g R P oot

felaladaadd Right lane of the cross street — *¥*x
Fedkdkkkkkd ok kkhhhdhddk * * * % Kkhkkhkkhkkk
c

1000 if (kfa(j2).eq.0) then

ixtsl = 0

jocl = 0

imgsl = 0

Iric = icl - lgic
if (mult.eq.0) then
write(kud, 121) kc
write(kud, 221)
221 format ('
street ***'/)
call HEAD(ku4, icl, 1lgic, 0, lric, noff(2),
noff (3))
endif

*** Right lane of the cross

call CTIME(ke, igsl, irsl, noff, lgic, icl, ip,
o}

call INIT(darrl, ddepl, darr2, ddep2, darr3,
ddep3, ncsl, nesl, ngsl, ksll, ks21, ks31,
isl, msl, m)

call INIT1(josl, nrs, iupsl, igis21, iqgis3i,
ncysll, ncys2l, ncys31, mgll, mg2l, mg3l,
indsll, igtsl, igesl, igeasl, iqtisl,
ngstsl)

call INIT2(niisl, ispsl, igssl, ngssl, nigsl,
dtigsl, muasl, dtuasi, nuxsl, dtuxsl)

call SIGADT(irsl, igsl, lric, lgic, icl, dist,
speed, jac, kc, darrr, jdum, jvar)

call DPHDWY (zz, zsut)
igsud = igsl(2)
in =10
ncal = nca
if(jdg.eq.11) ncal = 3*nca
igsud = igsud + icl
175¢0 180 kt = 1, ncal
n=73dn+ 1
arrrb(jn) = igsud + zz(kt) + 2.5
180 continue
igsud = igsud + icl

186

if(jn.1t.290) go to 175

kfa(j2) =1

endif

C

C———— Arrival time at intersection 1 —-——————
C

do 200 m = ma(j2), ma(j2)+ntg
if(igsl(2).ge.ismt) jvol = jvol + 1

if(ixtsl.eq.1) go to 250
ki21 (m) isl
ki3l (m) josl

IF (nrs.eq.0) then
darrl(m) = 7.2 * (m-isl)

call DEPIQ(ks1l, igsl(l), irsl(l), zz, ddepl,
m, icl, darrl, ncsl, darr2, ddep2, ki21,
mg2l, iveh(l), ncysll, nuil, deuil, jac, ke,
jdum, dy4, jvar)

if(imgsl.eq.l) imgsl = 0

call ARRNT(darr2, ddep2, ddepl, m, ncsl,
dist(l), speed, ma2l, jac, jdum, jvar)

Cm—mm= Departure time at intersection 2 —————-—
C

jwh = jwh3

jz2 = 1

if(ke.eq.2) jz2 = 4

if(kc.eq.3) jz2 = 11

call DEPQLS(ks21, igsl(2), irsl(2), zz, ddep2,
m, icl, darr2, nesl, darr3, ddep3, iqgis2i,
qs2l, ki3l, mgll, ncys2l, iveh(l), zsut,
nkasl, ispsl, nuasl, druasl, sutsl, igssi,
agsil, ngssl, rgs2l, nigsl, dtigsl, jdq,
nuxsl, dtuxsl, icx, Jwh, jac, ixtsl, tuz,
dtuz, wuz, ib, ijki, j2, j=z2, 15, st, ipt,
jaum, &S, jvax)

if(ixtsl.eq.l) jocl = 0

if (ixtsl.eq.1l.and.ijkl.eq.1) then
ixtsl = 0

ijkl = 0

endif

C———— Arrival time at intersection 3 ————~-—-

if(ixtsl.eq.1) go to 210

250 if(ixtsl.eg.l) then
jz2 = 1
if(kc.eq.2) jz2
if(kc.eq.3) jz2
ixtsl = 0

4
1

1

if (kc.eq.l) then

if(tuz(jz2) .1t.ddep2 (m) .and. tuz (322) .gt .ddep2 (m
y-icl. and.ig(l).1t.igs1(2)) then
tuz(jz2) = tuz(jz2) + icl

elseif {tuz(jz2).1lt.d3ep2 (m)~
icl.and.tuz(jz2) .gt. ddep2 (m)-
2*icl.and.ig(1) .1t.igs1(2)-icl) then
tuz(jz2) = tuz(jz2) + 2*icl

endif

endif

if(tuz(jz2).gt.igsl(2)) then
dtuz (jz2) = tuz(jz2) - igsl(2)
ddep2 (m) = ddep2(m) + dtuz(jz2)
if (ddep2 (m) .ge.irsl(2)) then
240 call UPDATE(nesl, ks21, igsl(2), irsl(2),
zz, ddep2, m, icl, ncys21)
nkasl(ispsl) = 0

igpsl = ispsl + 1
ixtsl =1
go to 210
endif
endif

endif

if(ijkl.eq.0.and. ((nca.eq.l.and. (ks2l.eq.2.0r.
jdg.eq.1l.and. (ks2l.eq.4.0r.ks2l.eq.5))) .or
(nca.eq.2.and. (ks2l.eq.2.or.ks2l.eq.3.0r.jdq

.eq.1l.and.
(ks2l.eqg.4.or.ke2l.eq.5.0r.ks2l.eq.6.0r.ks21
.eq.7))))) then

jz2 = 1

if(kc.eq.2) jz2 =4

if(kc.eq.3) jz2 = 11

if(nggl.ge.iveh(l) .and.st (jz2) ~
1.1l.gt.irsl(2)) then

call UPDATE (nesl, ks21, igsl(2), irsl(2),
zz, ddep2, m, icl, ncys21)

go to 252
endif

josl = josl +1

if{ke.ne.3.and. (ngal.eq.iveh(l) .or.jocl+ngal
.eq.iven(l)

.or.joclinkal (ispl) .eqg.iveh(l)+1) .and.st (jz2
)-1.l.gt.. ddep2(m)) then
niqsl =1
sscl = st{jz2)
if(sscl.gt.irsl(2)) then
iI[‘qSl =1
nigsl = 0
endif
if(sscl.gt.ddep2(m)) deigsl = sscl -~
ddep?2 (m)
endif
jocl = jocl + 1
go to 255
endif
ELSEIF (iupsl.eq.l) then
darrl(m) = dparrl
Adepl (m) = dpdepl
darr2(m) = dparr2
ddeDZ(m = dpdep2
nrs = 0
iupsl = 0
igesl = 0
igeasl = 0
EISE
darrl(m) = dparrl
Adepl (m) = dpdepl
darx2(m) = dparr2
ddep2 (m) = dpdep2

187

ENDIF

if(kc.eqg.3) icx = 34

252call ARRQLA(darr3, ddep3, ddep2, m, nesl,
dist(2), speed, at3l, darrr, isl, mnsl, nrs,
iupsl, ki3l, mg3l, indsll, igtsl, gstl,
igesl, igeasl, iveh(l), icx, nkasl, ispsl,
sutsl, niisl, igtisl, gstil, nigsl, dtigsl,
ngstsl, rgstl, jdg, arrp, icw, jac, jdum,
jvar)

ix =0

jwh = jwhd

call DEPART(ks31, igsl(3), irsl(3), zz, ddep3,
m, icl, darr3, ngsl, ncys3l, jac, 0, jwh,
ipt, jdum, &y6, jvar)

morod = 1

call UPDNKA(ks31, igsl(3), irsl(3), zz, ddep3,
m, jdg, lgic, icl, darr3, ngsl, mg3l, O,
ncys3l, zsut, iveh(l), nkasl, ispsl, sutsl,
mprod, jac)

255 continue

if(nrs.ne.0) then

)

dpdepl = ddepl (m)
dparr2 = darr2(m)
dodep2 = ddep2 (m)
darrl(m) = 0.
ddepl(m) = 0.
darr2(m) = 0.
ddep2(m) = 0.

endif

ki3lp = josl

if (mult.eq.0) then

call FRINT(darrl, ddepl, darr2, ddep2, darr3,
ddep3, kud, m, isl, josl, mg3l)

endif

if(imgsl.eq.1l) then
call UPDATE (nesl, ks21, igsl(2), irsl(2), zz,
ddep2, m, icl, ncys21)
nigsl = 0
ks21 = ks21 - 1
jocl = 0
endif

if (ki3lp.ne.ki3l(m)) go to 262
if(ncys31l.1t.ispsl) then
do 260 ik = ispsl, ispsl
nkasl (ik) = nkasl(ik) + 1
260 contirme
else
do 261 ik = ispsl, ncys3l
nkasl (ik) = nkasl(ik) + 1
261 continue

endif

262 if(nrs.ne.0) then
darrl(m) = dparrl
ddepl m) = dpdepl
darr2(m) = dparr2
Adep2 (m) = dpdep2

endif
if(imgsl.eqg.1l) go to 210

200 continue
210ma(j2) =m
if(igsl(2).ge.ismt) jvol = jvol - 1
if(imgsl.eq.1l) then

ma(j2) =m+ 1

if(igsl(2) .ge.iamt) jvol = jvol + 1
endif

1100 write(50)ixts, ncs, nes, ngs, ksl, ks2,
ks3, is, mns, jos, nls, iups, igis3, ncysl,
ncys2, ncys3, mg2, mg3, indsl, iges, igeas,
niis, nigs, nuas, muxs, ixtsl, ncsl, nesl,
ngsl, ksll, ks21, ks31, isl, mnsl, josl,
nrs, iupsl, igis3l, ncysll, ncys2l, ncys3l,
mg2l, mg3l, indsll, igesl, igeasl, niisl,
nigsl

write(50)nuasl, muxsl, ijk, ijkl, kfi, nui,
nuil, imgs, imgsl, joc, jocl, muzi, nuzil

write(50)dtigs, dtuas, dtuxs, cparrl, cpdepl,
cparr2, cpdep2, dtigsl, dtuasl, dtuxsl,
dtui, druil, dtuzi, dtuzil, dparrl, dpdepl,
dparr2, dpdep2

rewind(50)

return

ad

e e ok ok kok ok

subroutine DEPTQ(k, ig, ir, =z, dep, m, icl,
arr, nce, arrd, depd, ki, ng, ivehl, ncy,
nui, dtui, jac, ke, jdum, dohy, jvar)

dimension z(0:100), dep(0:2000), arr(0:2000)

dimension zsut{0:100), depd(0:2000),
arrd(0:2000), ki(0:2000)

dimension dply (0:60)

if(m.eg.1l) then

ng =0
stl =0
endif

k=k+1

call DPHDWY (2, zsut)

if (jvar.eg.l.and.k.eq.l.or.k.eq.2) then
call nordev(jdum, dply, icx)

endif

ircl = ir+icl*(2-jac)
call FINDEV(m, depd, ivehl, lks, stl)
ipo =9
call NOQUE(arrd, depd, 0, 0, ivehl, ki, m, ml,
ng, 0, 0, 0, ipo, 0)
if(arr(m).le.ircl) then
if(ng.eqg.ivehl+l) then
if (jvar.eq.0) then

depm = z(k) + ig
else

derm = dohy (k) + ig
endif
i =1
dtui = stl - depm
dep(m) = stl

if(stl.gt.ircl) then
igel = ig + icl
1f(dep(m) .gt.igel) then
call UPDATE(nce, k, ig, ir, z, dep, m, icl,
ney)
dtui = stl - ig - 2.05

188

if(dtui.gt.icl) then
260 call UPDATE(nce, k, ig, ir, z, dep, m,
icl, ncy)
drui = dtui - icl
dep(m) = stl
if(dtui.gt.icl) go to 260
endif
endif
endif
go to 100
endif

if(jvar.eq.0) then
dep(m) = z(k) + ig
else
dep(m) = dphy(k) + ig
endif
if (dep(m) .gt.ircl)then
call UPDATE(nce, k, ig, ir, z, dep, m, icl,

if (axr(m).ge.dep(m)) dep(m) = arr(m)
if(nui.eq.l) dep(m) = dep(m) + dtui

100 continue

elseif(arr(m).gt.ircl) then
call UPDATE(nce, k, ig, ir, z, dep, m, icl, :
ncy) |
mi = 0 \
if (arr(m) .ge.dep(m)) dep(m) = arr(m) !

endif

ml0=m-1

call findep(dep, ml0)

if (dep(m) .1t.dep(ml0)+0.7) then
dep(m) = dep(ml0) + 0.7

endif

ircl = ir+icl*(2-jac)

if(k.gt.2.and.arr(m-1) .eq.dep(m~-1) .and.
arr(m).gt.ig.and.arr{m).le.ircl) then
dep(m) = arr(m)

endif

if(dep(m).gt.ircl) then
call UPIATE(nce, k, ig, ir, z, dep, m, icl,
ney)
mi =0
endif
return
ad
*hhhkkd v
subroutine PRN(arrl, depl, arr2, dep2, axr3,
dep3, ku, m, j, jo, ng2, ng3, ng9)
dimension arrl(0:2000), depl(0:2000),
arr2 (0:2000)
dimension dep2(0:2000), arr3(0:2000),
dep3 (0:2000)
write(ka, 100) m, (m-3), j, jo, arrl(m),
Gepl(m), ng2, arr2(m), dep2(m), ng3, nqgo,
arr3(m), dep3{m)
100 format(414,
2F7.1)
return
ad
FThEKRR KK R
subroutine FRINT(arrl, depl, arr2, dep2, arr3,
dep3, ku, m, j, Jo, ngo)

2(1x, 2r8.1, I3), 1X, I3,

dimension arrl(0:2000), depl(0:2000),
arr2(0:2000)

dimension dep2(0:2000), arr3(0:2000),
dep3 (0:2000)

write(ka, 100) m, (m-3), j, jo, arrl(m),
depl(m), arr2(m), dep2(m), ng®, arr3(m),
dep3 ()

100 format (414, 2(1X, 2F¥8.1), I3, 1X, 2F8.1)

return

ad

R S % &k

subroutine HEAD(j, icl, 1lgi, ipt, lri, noff2,
noff3)

write(j, 100) icl, lgi, ipt, lri, noff2, noff3

100 formmat (3x, 'C=', i3, 'sec, ', ' g=', 12,
'sec, ', ' 1=', 12, 'sec, ', ' r=', 12,
‘sec, ', ' off2=', i2, ‘'sec, ‘', ' off3=’,
i2, ‘'sec'/)

write(j, 200)

200 format(' X thru turm **x Int #1
***" 1 *kk mt #2 ***'I v
*kk Tnt $3 Fxxr/ ! in out
A.time D.time’, ' A.time

D.time', !
return

A.time D.time'/)

ed

*xFhkdok Kk

subroutine INFUT(icl, dist, iveh, speed, ni)
dimension dist(20), iveh(20)

iveh(l) = int(dist(1)/20)
iveh(2) = int(dist(2)/20)
speed = 18.1

ni =3

return

ed

*kkkkkk

subroutine INIT(arrl, depl, arr2, dep2, arr3,
dep3, nc, ne, ng, k1, k2, k3, i, n, m)

dimension arrl(0:2000), depl(0:2000),
arr2(0:2000)

dimension dep2(0:2000), arr3(0:2000),
dep3 (0:2000)

nc =

ne =0

ng =0

kt =0

k=0

kK3=0

i=90

n=1

do 100 m = 0, 2000
arrl(m) = 0.
depl (m) = O.
arr2(m) = 0.
dep2(m) = 0.
arr3(m) = 0.

100 dep3(m) = 0.
retum ,
ed

* ke kh

subroutine INIT1(jo, mm, iup, igi2, igi3,
neyl, ney2, ncy3, ng2, ng3, ngd, indl, igt,
ige, igea, igti, ngst)

jo =

mn = 0
iwp =0
igi2 =0
igi3 = 0

189

subroutine INIT2(nii, isp, igs, ngs, niqg, dtiq,
nua, dtua, nux, dtux)
nii
isp
igs
ngs
niqg
dtig = 0.
mua = 0
dtua = 0.
nux = 0
dtux = 0.

returm

erd

Fdkkdkkk

subroutine SIGNAL{Jjl, speed, icl, ni, ir, ig,
noff, 1lgi)

dimension ir(20), ig(20), noff(20)

ir(l) = 0

ig(l) = icl - lgi

irl = ir(1)

igl = ig(1)

do 100 n =1, ni-1
ir(n+l) = ir(l) + noff(n+l)
ig(n+l) = ig(l) + noff(n+l)

100 continue

if{jl.eq.3.0r.jl.eq.4) then
ir(l) = ir(ni)
ig(1) = ig(ni)
if(ir(l).gt.0) then

LI { I TR
[oNeRel o]

ig(l) = ig(1l) - icl
ir(l) = ir(l) - icl
endif
ir(2) = ir(2)
ig(2) = ig(2)
ir(3) = irl
ig(3) = igl
endif
retum

end

*hkkkkdk

subroutine SIGNAL(jc, ni, ir, ig, irl, igl)
dimension ir(20), ig(20), irl(20), igl(20)

if(jc.eq.l) then

do100n=1, ni
irln) = ir(n)
igl(n) = ig(n)

100 continue

else

do200n=1, ni
irl(n) = ir(4-n)
igl(n) = ig(4-n)

200 continue

endif

return

ad

ok ke kk ke

subroutine CTIME(ke, ig, ir, noff, lgi, icl,
ip, jp)

dimension ir(20), ig(20), noff(20)
ig(2) = noff (kec)
if(ig(2).ge.icl) ig(2) = ig(2) - icl
ir(2) = ig(2) + lgi
ig(l) = ig(2) - ip
ir(l) = ir(2) - ip
ig(3) = ig(1) + jp
ir(3) = ir(l) + jp

retuin

end

dkkkkkk

subroutine SIGADJ (ir, ig, lri, 1lgi, icl, dist,
speed, jac, ko, carrr, jdm, jvar)

dimension ir(20), ig(20), dist(20),
carrr(0:500)

rlo = 0.0

if(jvar.eq.1) then

call rspeed(jdum, rlo, speed, icx)

else
speed = 30.9

endif

wid = 40.

if(jac.eq.2) wid = 60.

if(ig(1)+lgi.1t.0.or.Jac.eqg.2.and.ir(1) .1e.7.2)
then

ir(l) = ir(1) + icl
ig(l) = ig(1) + icl
endif
al = 7.2

if(jac.eq.1) al = lri + 2.04
if(kc.eq.l) then
al = ig(l) + 2.04
if(al.1t.7.2) al = 7.2
endif
arr2f = al + (dist(1)+wid)/speed
ircl2 = ir(2) - icl
if(jac.eqg.l) ircl2 = ir(2)
if(kc.eq.l) ircl2 = ig(2)

if(arr2f.gt.ig(2)+lgi) then
ir(2) = ir(2) + icl
ig(2) = ig(2) + icl
elseif (axr2f.1lt.ircl2) then

ir(2) = ix(2) - icl

ig(2) = ig(2) - icl
endif
if(axr2f.1t.1ig(2)) dep2f = ig(2) + 2.04
if (arx2f.ge.ig(2)) dep2f = arr2f

arr3f = dep2f + (dist(2)+wid)/speed
ircl3 = ir(3) - icl
if(jac.eq.l) ircl3 = ir(3)

if (arx3f.gt.1g(3)+1gi) then
ig(3) = ig(3) + icl
ir(3) = ir(3) + icl
elseif (arr3f.1lt.ircl3) then

ig(3) = ig(3) - icl
ir(3) = ir(3) - icl
endif

if(jac.eq.2.and.ig(3) .gt.carrr(1l)+icl) then
ig(3) = ig(3) - icl

ir(3) = ir(3) - icl
endif
return |
e |
*hkkAAk
subroutine UPDATE (nce, k, ig, ir, z, dep, m,
icl, ncy)
dimension z(0:100), dep(0:2000), zsut (0:100)
nce = 0
k=1
ig = ig + icl
ir = ir + icl
call DPHDWY (z, zsut)
dep(m) = z(k) + ig

noy =ncy + 1
returm
ed
Fdxkkkxk
subroutine UFDATI (nux, niqg, nua)
mx = 0
nig =0
ma = 0
retuwm
ed
*hkkkkd

subroutine PRNOS(ku, nint, icl, lgi, jig, gs,
jney, jigs, gei, jnrgs, rgs, prgs, pgs,
pasn, ptgs, ismt, smtj, mult)

dimension gs(80), gsi(80), rqgs(80)

if (mult.eq.0) then
S‘[m = Smtj - ismt
write(ku, 111) nint

111 format(/' **** QS due to thru traffic at

Int.#', i2, toxEREL /)
write(ku, 113) ismt

113 format(' Simulation starts at t =', i4, °
sec')

write(ku, 115) smtj

115 fommat(' Simulation ends at t =', £6.0, '
sec'/)
write(ka, 117) jncy

117 format (2x, 'No. of cycle:', i3/)

do 100 ig = 1, jig
write(ku, 110) iq, gs(iq)
110 format (i8, 8x, f£8.1)
100 continue
if(jig.eq.0) then
write(ku, 120) jig
120 format (2x, 'No. of QSi-full:', i3/)
else
call AMOS(ismt, smtj, gs, jiqg)
vrite(ku, 120) jig
endif

do 200 jg = 1, jigs —
write(ku, 210) jq, gsi(jg)
210 format (i8, 8x, £8.1)
200 continue
1f(jigs.eq.0) then
write(ku, 220) jigs
220 format (2x, 'No. of QSi-n.full:', i3/)
else
call CNNQS (ismt, smtj, qsi, jigs)
write(ku, 220) jigs
endif
c
do 300 ia = 1, jnrgs

write(ku, 310) ia, rgs(ia)
310 format (18, 8x, £8.1)
300 contirme
if(jnrgs.eq.0) then
write(ku, 320) jnrgs
320 format (2x, ‘No. of QS-full/n.full:’,
i3/)
else
call CMNQS (ismt, smtj, rgs, Jjnrgs)
write(ku, 320) jnrgs
endif
endif

if(mult.eqg.l) then
if(jig.ne.0) then
call OQNQS(ismt, smtj, gs, jig)
endif
if(jigs.ne.0) then
call ONQS (ismt, smtj, gsi, jigs)
endif
if(jnrgs.ne.0) then
call CONNQS(ismt, smtj, rgs, jnrgs)
endif
endif

ncy = ooy

prgs = jargs/ncy

pas = jig/lncy

pasn = jigs/bncy

jtotal = jig + jigs + jnrgs
ptas = jtotal/ncy

if(mult.eq.0) then
write(ku, 340) pras

340 format(® No.of QsS-f/n.f per cycle:’,
£5.2, ' / cycle'/)
write(ku, 360) jtotal

360 format(2x, 'No. of QS{i)-total:', i3/)
write(ku, 380) ptgs

380 format(*' No.of QS(i)-total per cycle:',
£5.2, ' / cycle'/)
write(ku, 460) smpd

460 format(2x, 'Simulation Period:', £6.0, '
sec'/)

endif

returm

ad

dkdkdhk

subroutine CQANQS(ismt, smtj, wgs, jnngs)

dimension wgs (80}

mgs = 0

do 100 ii = 1, Jnngs
if (wgs (i) .gt.iamt.and.wgs(ii).lt.smtj) then

mgs = mgs + 1

endif

100 continue

jongs = mngs

returm

end

dkkRh ik

subroutine PRNQST(ku, nint, jigt, gst, jiqgti,
gsti, jncy, jnrgst, rgst, prgst, pgst,
pastn, ptgst, ismt, smtj, nmult) -

dimension gst (80), qsti(80), rast(80)

if (mult.eq.0) then
write(ku, 111) nint

111 format(/* **** 0S due to turn-in traffic
at Int. #', iz, PoEEEE /)

191

write(ku, 117) jncy
117 format (2x, 'No. of cycle:', i3/)

do 100 ig = 1, jigt
write(ku, 110) iqg, gst(iq)
110 format (18, 8x, £8.1)
100 continue
if(jigt.eq.0) then
write(ku, 120) jigt
120 format (2x, 'No. of Qsi-full:', 1i3/)
else
call QNQS(ismt, smtj, gst, jigt)
write(kua, 120) jigt
endif

do 200 ia = 1, jigti
write(ku, 210) ia, gsti(ia)
210 format (i8, 8x, £8.1)
200 continue
if(jigti.eq.0) then
write(ka, 220) jigti
220 format (2%, 'No. of QSi-n.full:', 1i3/)
else
call QNQS(ismt, smtj, gsti, jiqei)
write(ku, 220) jigti
endif

do 300 iat = 1, jnrgst
write(ku, 310) iat, rgst(iat)
310 format (i8, 8x, £8.1)
300 continue
if (jnrgst.eq.0) then
write(ku, 320) jnrgst
320 format (2x, 'No. of QS-full/n.full:",
i3/)
else
call QMNQS(ismt, smtj, rgst, jnrgst)
write(ku, 320) jnrgst
endif
endif

if (mult.eq.1) then
if(jigt.ne.0) then
call CNNQS (iamt, emtj, gst, jigt)
endif
if(jigti.ne.0) then
call QWNQS(ismt, smtj, gsti, jigti)
endif
if(jnrgst.ne.0) then
call QWNQS (iemt, smtj, rgst, jnrast)
endif
endif

ncy = jnoy

prgst = jorgst/kncy

pet = Jjige/lncy

pgstn = jigti/ncy

jtotal = jigt + jigei + jnragst
ptgst = jtotal/lncy

if(malt.eq.0) then
write(ku, 340) prgst

340 format(' No.of @S-f/n.f per cycle:*,
£5.2, ' / cycle'/)
write(ku, 360) jtotal

360 format(2x, 'No. of QS(i)-total:', i3/)
write(ku, 380) ptgst

380 format(* No.of QS({i)-total per cycle:',
£5.2, ' / cycle'/)
endif
return
ad
EE e
subroutine FRNOPL (ku, jc, In, incre, ioffl,
ioff2, joffl, joff2, pt)
dimension pt(0:15, 0:15)
if(jc.eq.1) then
write(ku, 10) In
10 format(/4X, 'arterial lane no.', il/)
elseif (jc.eq.2) then
write(ku, 20) In
20 format(/4X, 'cross street no.', il/)
elseif (jc.eq.3) then
write(ku, 30)
30 format (/4X,
elseif (jc.eq.4)
write(ku, 40)
40 format (/4X,
elseif (je.eq.5)
write(ku, 50)
50 format(/4%,

‘arterial total'/)
then

‘cross street total'/)
then

'"No.of QS per cycle: Total'/)

elseif (jc.eq.6) then

write(ku, 60)
60 format(/4X, 'Simulation Period: Total'/)
endif

write(ku, 200)
200 format (4x,
write(ku, 300)
300 format(2x, ‘'off2')
do 500 ip = ioffl, ioff2
if(jc.ne.6) then
write(ku, 400) ip*incre, (pt(ip, jp),
Jp=joffl, joff2)
400 format (3x, i3, 15£6.2)
else
write(ku, 410) ip*incre, (pt(ip, jp),
Jp=joffl, joff2)
410 format (3%, i3, 15£6.0)
endif
500 continue
return
ed
KhRkhKFk
subroutine PRNOP2 (ku, 1n, incre, ioffl, ioff2,
Joffl, joff2, mt)
dimension mt(0:15, 0:15)
if(In.eq.99) then
write(lu, 100)
100 format (/4%,
go to 15
endif
write(ku, 10) In
10 format (/4X, ‘lane no.'i2/)
15 write(ku, 20) (jp*incre,

(Jp*incre, Jjp = joffl, joff2)
'off3:, i2, 14(3x, i3))

‘No. of wvehicles (waxmup)'/)

Jjp = joffl, joff2)

20 format (4x, 'off3:*, i2, 14(3x, i3))
write(ku, 30)
30 format (2%, 'off2')

do 50 ip = ioffl, ioff2
write(ku, 40) ip*incre, (mt{ip, jip), dp =
Joffl, joff2)

40 format (3x, 13, 15i6)

50 contirme

return

axd

kK Kk kK

192

subroutine rspeed(jdum, rlo, speed, icx)
dimension rm(100), vnor(100)
idum = jéum - 100 i
jéum = jdum - 100 !
if (rlo.gt.0.001) then

s = 2.57
else

xbar = 30.9

s = 3.81

ni =1
nj =1

call ramwm (idum, rn, ni) !
call normal (rn, vnor, nj, icx) i

if (rlo.gt.0.001) then

speed = s*vnor(1) + 23.365 -~ 9.0025*rlo
else

speed = s*vnor(l) + xbar
endif

return

ad

*dkdedokkk

subroutine nordev{jdum, dphy, icx)

dimension m(100), vnor(100), hdwy(100),
dohy (0:60)

idum = jdum - 100

jr = jdum - 100

s = 0.43
ni = 100
nj = 60
dohy (0) = 0.

J
ol () = dohy (3-1
11 continue
returm
exd
Kk Kk ek
subroutine ranmm(icum, rn, ni)
dimension r(97), rm(100)

parameter (ml=259200, ial=7141, icl=54773,
mul=1. /rl)
parameter (m2=134456, ia2=8121, ic2=28411,
m2=1./m2)
parameter (m3=243000, ia3=4561, ic3=51349)
data iff /0/

do10i=1, ni
if (idum.lt.0.or.iff.eq.0) then
iff =1
ixl = mod(icl-idum, ml)
ixl = mod(ial*ixl+icl, ml)
ix2 = mod(ixl, m2)
ixl = mod(ial*ixl+icl, ml)
ix3 = mod(ix1, m3)
do 11 5 =1, 97
ixl = mod({ial*ixl+icl, ml)
ix2 = mod(ia2*ix2+ic2, m2)
r(3) = (float {ix1)+float (ix2) *1m2) *rml
11 continue

idun = 1
endif
ixl = mod(ial*ixl+icl, ml)
ix2 = mod(ia2*ix2+ic2, m2)
ix3 = mod(ia3*ix3+ic3, m3)
j =1+ (97*1x3)/m3
i

m(i) = r(3j)

r(3) = (float(ixl)+float (ix2) *rm2) *rml

10 continue
returm
end

kkkkdkx

subroutine noxmmal (rm, vnor, nj, icx)

dimension m(100), vnor(100)
data iset/0/

i=0

iov = 0

do 50k =1, nj
vnor (k) = 0.0
50 continue

do 100 § =1, nj
if (iset.eq.0) then
i=1i+2
10 vl = 2.*m(i-1) - 1.
v2 = 2.*m(i) - 1.
r = vI¥*2 + v2**2
if (r.ge.l) then
i=1+2
if(i.gt.100) then
i=0
iov =1
go to 100
endif

fac = sqrt(-2.*log(r) /r)
gset = vl*fac
gasdev = v2*fac
ji=3
if(iov.eq.l) jj =33 -1
vnor{(jj) = gasdev
iset = 1
else
gasdev = gset
jj=13
if(iov.eg.l) j3 =3 -1
vnor (3j) = gasdev

iset = 0
endif
100 continue
return

ed

f (j.gt.97.0r.j.1t.1) pause ‘stop’

193

194

References

Battle, R.M., et al. 1956. "Starting Delay and Timing Spacing of Vehicles Entering Signalized
Intersection”, Highway Reseasrch Board Bulletin 112, HRB, National Research Council,
Washington, D.C., 33-41.

Branton, D. 1978. "A Comparison of Observed and Estimated Queue Lengths at Oversaturated
Traffic Signals”, Traffic Engineering and Control, Vol.19, 322-327.

Carstens, R.L. 1971. "Some Traffic Parameters at Signalized Intersections", Traffic Engineering,
Vol.41, No.11, 33-36.

Chang, E.C.P., et al. 1988. Arterial Signal Timing Optimization Using PASSER [I-87-
Microcomputer User's Guide. Report TTI-2-18-86-467-1, TTl, Texas A&M University
System, College Station,Texas.

Church, R. and ReVelle, C. 1978. "Modelling an Oversaturated Intersection", Transportation
Research, Vol.12, 185-189.

Edie, L. C. 1961. "Car-following and steady-state theory for noncongested traffic" Operations
Research, Vol.9, 66-76.

Efstathiadis, Stilianos 1992. Variability of Departure Headways at Signalized Intersections,
Master's thesis, The University of Texas at Austin

FHWA. 1988. TRAF-NETSIM User's Manual. FHWA, U.S. Department of Transportation,
Washington, D.C.

Gazis, D.C. 1964. "Optimum Control of a System of Oversaturated Intersections”, Operations
Research, Vol.12, 815-831. ‘

Gazis, D.C. and Potts, R.B. 1965. "The Oversaturated Intersection”, Proc. 2nd Int. Symp. on the
Theory of Road Traffic Flow, 221-237.

Gerlough, D.L. and Huber, M.J. 1975. Traffic Flow Theory. Transportation Research Board,
National Research Council, Washington, D.C.

Gerlough, D.L. and Wagner, F.A. 1967. Improved Criteria for Traffic Signals at Individual
Intersections. NCHRP Report 32, HRB, National Research Council, Washington, D.C.

George, Jr., E.T. and Heroy, Jr., F.M. 1966. "Starting Response of Traffic at Signalized
Intersections”, Traffic Engineering, 39-43.

Gordon, R. L. 1969. “A Technique for Control of Traffic at Critical Intersections", Transportation
Science, Vol.4, 279-287.

195

Greenshields, B.D., Schapiro, D., Ericksen, E.L. 1947. "Traffic Performance at Urban Street
Intersections", Technical Report No. 1, Yale Bureau of Highway Traffic, Eno Foundation
for Highway Traffic Control.

Kim, Y. 1990. Development of Optimization Models for Si nalized intersections Durin
Oversaturated Conditions, Ph. D. Dissertation, Texas A&M University, College Station,
Texas.

King, G.F. and Wilkinson, M. 1976. "Relationship of Signal Design to Dischage Headway,
Approach Capacity, and Delay", Transportation Research Record 61 5. TRB, National
Research Council, Washington, D.C., 37-44.

Lee, B., et al. 1975. "Better Use of Signals Under Oversaturated Flows", Transportation Research
Board SR153, National Research Council, Washington, D.C., 60-72.

Lee, J. and Chen, R.L. 1986. "Entering Headway at Signalized Intersections in a Smalil

Metropolitan Area“, Transportation Research Board 1091, TRB, National Research

Council, Washington, D.C., 117-126

Lieberman, E.B., et al. 1986. " Congestion-Based Control Scheme for Closely Spaced, High

Traffic Density Networks", Transportation Research Board 1057, TRB, National Research
Council, Washington, D.C., 49-57.

Lieberman, E.B. and Woo, J.L. 1982. SIGOP-IIl User's Manual. Report FHWA-IP-82-A, FHWA,
U.S. Department of Transportation, Washington, D.C.

Longley, D. 1968. "A Control Strategy for a Congested Computer-Controlied Traffic Network",
Transportation Research, Vol.2, 391-408.

Longley, D., 1971. "A Simulation Study of a Traffic Network Control Scheme", Transportation
Research, Vol.5, 39-57.

Lu, Y.J. 1984. "A Study of Left-Turn Maneuver Time for Signalized Intersections", ITE Journal
Vol.41, No.10, 42-47.

May, A.D. 1990. Traffic Flow Fundamentals, Prentice Hall, New Jersey, 376-414.

May, A.D. and Montgomery, F.O. 1986. "Control of Congestion at Highly Congested Junctions”,
Transportation Research Record 1057, TRB, National Research Council, Washington,
D.C., 42-48.

May, A.D. and Pratt, D. 1968. "A Simulation Study of Load Factor at Signalized Intersections”,
Traffic Engineering, Vol.38, No.5, 44-49.

Michalopoulos, P.G. and Stephanopoulos, G. 1977a. "Oversaturated Signal Systems with Queue
Length Constraints-1", Transportation Research, Vol.11, 413-421.

Michalopouios, P.G. and Stephanopoulos, G. 1977b. "Oversaturated Signal Systems with Queue
Length Constraints-II", Transportation Research, Vol.11, 423-428.

196

Michalopoulos, P.G. 1978. "Optimal Control of Oversaturated Intersections: theoretical and
practical considerations", Traffic Engineering and Control, Vol.19, 216-221.

Michalopoulos, P.G. 1979. "An Algorithm for Real-time Control of Critical Intersections”, Traffic
Engineering and Control, Vol.20, 9-15.

Michalopoulos, P.G., et al. 1981."An Application of Shock Wave Theory to Traffic Signal Control®,
Transportation Research, Vol.15B, 35-51.

Moussavi, Massoum and Tarawneh, Mohammed 1990. "Variability of departure headways at
signalized intersections", ITE_1990 Compendium_of Technical Papers, Institute of
Transportation Engineers, 313-317.

Newell, G. 1989. Theory of Highway Traffic Signals. Course Notes UCB-ITS-CN-89-1, Institute of
Transportation Studies, University of California at Berkeley.

OECD, 1981. Traffic Control in Saturated Conditions. Organization for Economic Co-operation
and Development, Paris, France.

Pignataro, L.J., et al. 1978. Traffic Control in Oversaturated Street Networks. NCHRP Report 194,
TRB, National Research Council, Washington, D.C.

Press, W.H., et al. 1986. Numerical Recipes, Cambridge University Press, Cambridge, 191-203.

Rathi, A.K. 1988. "A Control Scheme for High Traffic Density Sectors", Transportation
Research,Vol.22B, 81-101.

Rouphail, N. 1991. "Cycle-by-Cycle Analysis of Congested Flows at Signalized Intersections®, ITE
Journal, Vol.61, No.3,33-36.

Shawaly, E.A.A,, et al. 1988. "A Comparison of Observed, Estimated, and Simulated Queue
Lengths and Delays at Oversaturated Signalized Junctions®, Traffic Engineering and
Control, Vol.29, 637-643.

Shibata, J. and Yamamoto, T. 1984. "Detection and Control of Congestion in Urban Road
Networks", Traffic Engineering and Control, Vol.25, 438-444.

Wallace, C.E., et al. 1988. TRANSYT-7F User's Manual. Transportation Research Center,
University of Florida, Gainesville, Florida.

Wong, S. 1990. "TRAF-NETSIM: How It Works, What it Does", ITE Journal, Vol.60, No.4, 22-27.

197

	Abstract
	Table of Contents
	CHAPTER 1 INTRODUCTION
	CHAPTER 2 BACKGROUND AND LITERATURE REVIEW
	CHAPTER 3 CONCEPTUAL APPROACHES TO PROBLEM
	CHAPTER 4 DEVELOPING A TRAFFIC SIMULATION MODEL
	CHAPTER 5 DESIGN AND ANALYSIS OF SIMULATION EXPERIMENTS
	CHAPTER 6 CONCLUSIONS
	Appendix A
	Appendix B
	References

